Symmetric Coronal Jets: A Reconnection-controlled Study

Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2010-06, Vol.715 (2), p.1556-1565
Hauptverfasser: Rachmeler, L. A, Pariat, E, DeForest, C. E, Antiochos, S, Török, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 2
container_start_page 1556
container_title The Astrophysical journal
container_volume 715
creator Rachmeler, L. A
Pariat, E
DeForest, C. E
Antiochos, S
Török, T
description Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this system. One of the codes is the Eulerian adaptive mesh code ARMS, which simulates magnetic reconnection through numerical diffusion. The quasi-Lagrangian FLUX code, on the other hand, is ideal and able to evolve the system without reconnection. The ideal nature of FLUX allows us to provide a control case of evolution without reconnection. We find that during the initial symmetric and ideal phase of evolution, both codes produce very similar morphologies and energy growth. The symmetry is then broken by a kink-like motion of the axis of rotation, after which the two systems diverge. In ARMS, current sheets formed and reconnection rapidly released the stored magnetic energy. In FLUX, the closed field remained approximately constant in height while expanding in width and did not release any magnetic energy. We find that the symmetry threshold is an ideal property of the system, but the lack of energy release implies that the observed kink is not an instability. Because of the confined nature of the FLUX system, we conclude that reconnection is indeed necessary for jet formation in symmetric jet models in a uniform coronal background field.
doi_str_mv 10.1088/0004-637X/715/2/1556
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_849476478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849476478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-584abc1edc5b3353a4b372e527368fd24134117f834be6106c450bd47df8deaa3</originalsourceid><addsrcrecordid>eNqNkE9LwzAYh4MoOKffwEPBg4jUJk3SpN7GUKcMBKfgLaRJyiptM5NM2Lc3pbKLHjy9f3h-Ly8PAOcI3iDIeQYhJGmB2XvGEM3yDFFaHIAJopinBFN2CCZ75BiceP8xjHlZTgBb7brOBNeoZG6d7WWbPJngb5NZ8mKU7XujQmP7NLbB2bY1OlmFrd6dgqNatt6c_dQpeLu_e50v0uXzw-N8tkwVKVhIKSeyUshoRSuMKZakwiw3NGe44LXOCcIEIVZzTCpTIFgoQmGlCdM110ZKPAUX413rQyO8aoJR65-_RI4izUscqauRWstWbFzTSbcTVjZiMVuKYQcx41EK_UKRvRzZjbOfW-OD6BqvTNvK3titF5yUhBWE8UiSkVTOeu9MvT-NoBjEi0GjGKyKKF7kYhAfY9kYa-zmv4nr34m_SLHRNf4Go5OPSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849476478</pqid></control><display><type>article</type><title>Symmetric Coronal Jets: A Reconnection-controlled Study</title><source>Institute of Physics Open Access Journal Titles</source><creator>Rachmeler, L. A ; Pariat, E ; DeForest, C. E ; Antiochos, S ; Török, T</creator><creatorcontrib>Rachmeler, L. A ; Pariat, E ; DeForest, C. E ; Antiochos, S ; Török, T</creatorcontrib><description>Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this system. One of the codes is the Eulerian adaptive mesh code ARMS, which simulates magnetic reconnection through numerical diffusion. The quasi-Lagrangian FLUX code, on the other hand, is ideal and able to evolve the system without reconnection. The ideal nature of FLUX allows us to provide a control case of evolution without reconnection. We find that during the initial symmetric and ideal phase of evolution, both codes produce very similar morphologies and energy growth. The symmetry is then broken by a kink-like motion of the axis of rotation, after which the two systems diverge. In ARMS, current sheets formed and reconnection rapidly released the stored magnetic energy. In FLUX, the closed field remained approximately constant in height while expanding in width and did not release any magnetic energy. We find that the symmetry threshold is an ideal property of the system, but the lack of energy release implies that the observed kink is not an instability. Because of the confined nature of the FLUX system, we conclude that reconnection is indeed necessary for jet formation in symmetric jet models in a uniform coronal background field.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/715/2/1556</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>Astrophysics ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; EVOLUTION ; FUNCTIONS ; LAGRANGIAN FUNCTION ; MAGNETIC FIELDS ; MAGNETIC RECONNECTION ; MAIN SEQUENCE STARS ; Physics ; SOLAR SYSTEM EVOLUTION ; STARS ; SUN</subject><ispartof>The Astrophysical journal, 2010-06, Vol.715 (2), p.1556-1565</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-584abc1edc5b3353a4b372e527368fd24134117f834be6106c450bd47df8deaa3</citedby><cites>FETCH-LOGICAL-c467t-584abc1edc5b3353a4b372e527368fd24134117f834be6106c450bd47df8deaa3</cites><orcidid>0000-0002-2900-0608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/715/2/1556/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/715/2/1556$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-03785565$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21450893$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rachmeler, L. A</creatorcontrib><creatorcontrib>Pariat, E</creatorcontrib><creatorcontrib>DeForest, C. E</creatorcontrib><creatorcontrib>Antiochos, S</creatorcontrib><creatorcontrib>Török, T</creatorcontrib><title>Symmetric Coronal Jets: A Reconnection-controlled Study</title><title>The Astrophysical journal</title><description>Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this system. One of the codes is the Eulerian adaptive mesh code ARMS, which simulates magnetic reconnection through numerical diffusion. The quasi-Lagrangian FLUX code, on the other hand, is ideal and able to evolve the system without reconnection. The ideal nature of FLUX allows us to provide a control case of evolution without reconnection. We find that during the initial symmetric and ideal phase of evolution, both codes produce very similar morphologies and energy growth. The symmetry is then broken by a kink-like motion of the axis of rotation, after which the two systems diverge. In ARMS, current sheets formed and reconnection rapidly released the stored magnetic energy. In FLUX, the closed field remained approximately constant in height while expanding in width and did not release any magnetic energy. We find that the symmetry threshold is an ideal property of the system, but the lack of energy release implies that the observed kink is not an instability. Because of the confined nature of the FLUX system, we conclude that reconnection is indeed necessary for jet formation in symmetric jet models in a uniform coronal background field.</description><subject>Astrophysics</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>EVOLUTION</subject><subject>FUNCTIONS</subject><subject>LAGRANGIAN FUNCTION</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETIC RECONNECTION</subject><subject>MAIN SEQUENCE STARS</subject><subject>Physics</subject><subject>SOLAR SYSTEM EVOLUTION</subject><subject>STARS</subject><subject>SUN</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LwzAYh4MoOKffwEPBg4jUJk3SpN7GUKcMBKfgLaRJyiptM5NM2Lc3pbKLHjy9f3h-Ly8PAOcI3iDIeQYhJGmB2XvGEM3yDFFaHIAJopinBFN2CCZ75BiceP8xjHlZTgBb7brOBNeoZG6d7WWbPJngb5NZ8mKU7XujQmP7NLbB2bY1OlmFrd6dgqNatt6c_dQpeLu_e50v0uXzw-N8tkwVKVhIKSeyUshoRSuMKZakwiw3NGe44LXOCcIEIVZzTCpTIFgoQmGlCdM110ZKPAUX413rQyO8aoJR65-_RI4izUscqauRWstWbFzTSbcTVjZiMVuKYQcx41EK_UKRvRzZjbOfW-OD6BqvTNvK3titF5yUhBWE8UiSkVTOeu9MvT-NoBjEi0GjGKyKKF7kYhAfY9kYa-zmv4nr34m_SLHRNf4Go5OPSw</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Rachmeler, L. A</creator><creator>Pariat, E</creator><creator>DeForest, C. E</creator><creator>Antiochos, S</creator><creator>Török, T</creator><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2900-0608</orcidid></search><sort><creationdate>20100601</creationdate><title>Symmetric Coronal Jets: A Reconnection-controlled Study</title><author>Rachmeler, L. A ; Pariat, E ; DeForest, C. E ; Antiochos, S ; Török, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-584abc1edc5b3353a4b372e527368fd24134117f834be6106c450bd47df8deaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Astrophysics</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>EVOLUTION</topic><topic>FUNCTIONS</topic><topic>LAGRANGIAN FUNCTION</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETIC RECONNECTION</topic><topic>MAIN SEQUENCE STARS</topic><topic>Physics</topic><topic>SOLAR SYSTEM EVOLUTION</topic><topic>STARS</topic><topic>SUN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachmeler, L. A</creatorcontrib><creatorcontrib>Pariat, E</creatorcontrib><creatorcontrib>DeForest, C. E</creatorcontrib><creatorcontrib>Antiochos, S</creatorcontrib><creatorcontrib>Török, T</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rachmeler, L. A</au><au>Pariat, E</au><au>DeForest, C. E</au><au>Antiochos, S</au><au>Török, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric Coronal Jets: A Reconnection-controlled Study</atitle><jtitle>The Astrophysical journal</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>715</volume><issue>2</issue><spage>1556</spage><epage>1565</epage><pages>1556-1565</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Current models and observations imply that reconnection is a key mechanism for destabilization and initiation of coronal jets. We evolve a system described by the theoretical symmetric jet formation model using two different numerical codes with the goal of studying the role of reconnection in this system. One of the codes is the Eulerian adaptive mesh code ARMS, which simulates magnetic reconnection through numerical diffusion. The quasi-Lagrangian FLUX code, on the other hand, is ideal and able to evolve the system without reconnection. The ideal nature of FLUX allows us to provide a control case of evolution without reconnection. We find that during the initial symmetric and ideal phase of evolution, both codes produce very similar morphologies and energy growth. The symmetry is then broken by a kink-like motion of the axis of rotation, after which the two systems diverge. In ARMS, current sheets formed and reconnection rapidly released the stored magnetic energy. In FLUX, the closed field remained approximately constant in height while expanding in width and did not release any magnetic energy. We find that the symmetry threshold is an ideal property of the system, but the lack of energy release implies that the observed kink is not an instability. Because of the confined nature of the FLUX system, we conclude that reconnection is indeed necessary for jet formation in symmetric jet models in a uniform coronal background field.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/715/2/1556</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2900-0608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2010-06, Vol.715 (2), p.1556-1565
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_849476478
source Institute of Physics Open Access Journal Titles
subjects Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
EVOLUTION
FUNCTIONS
LAGRANGIAN FUNCTION
MAGNETIC FIELDS
MAGNETIC RECONNECTION
MAIN SEQUENCE STARS
Physics
SOLAR SYSTEM EVOLUTION
STARS
SUN
title Symmetric Coronal Jets: A Reconnection-controlled Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20Coronal%20Jets:%20A%20Reconnection-controlled%20Study&rft.jtitle=The%20Astrophysical%20journal&rft.au=Rachmeler,%20L.%20A&rft.date=2010-06-01&rft.volume=715&rft.issue=2&rft.spage=1556&rft.epage=1565&rft.pages=1556-1565&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/715/2/1556&rft_dat=%3Cproquest_O3W%3E849476478%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849476478&rft_id=info:pmid/&rfr_iscdi=true