Survey on speech emotion recognition: Features, classification schemes, and databases

Recently, increasing attention has been directed to the study of the emotional content of speech signals, and hence, many systems have been proposed to identify the emotional content of a spoken utterance. This paper is a survey of speech emotion classification addressing three important aspects of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2011-03, Vol.44 (3), p.572-587
Hauptverfasser: El Ayadi, Moataz, Kamel, Mohamed S., Karray, Fakhri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 587
container_issue 3
container_start_page 572
container_title Pattern recognition
container_volume 44
creator El Ayadi, Moataz
Kamel, Mohamed S.
Karray, Fakhri
description Recently, increasing attention has been directed to the study of the emotional content of speech signals, and hence, many systems have been proposed to identify the emotional content of a spoken utterance. This paper is a survey of speech emotion classification addressing three important aspects of the design of a speech emotion recognition system. The first one is the choice of suitable features for speech representation. The second issue is the design of an appropriate classification scheme and the third issue is the proper preparation of an emotional speech database for evaluating system performance. Conclusions about the performance and limitations of current speech emotion recognition systems are discussed in the last section of this survey. This section also suggests possible ways of improving speech emotion recognition systems.
doi_str_mv 10.1016/j.patcog.2010.09.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849475669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320310004619</els_id><sourcerecordid>849475669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-24a55a3b69f419799dfc879b7d84968cf8f56b6a7fb6164fe4798d3f0f7c4af63</originalsourceid><addsrcrecordid>eNp9kE1rGzEQhkVoIW6af5DDXkouXVdaafXRQ6CY5gMCPSQ-i1ntqJFZ77qadcD_vnIceuxJ0uiZd5iHsSvBl4IL_W2z3MEcpt_LhpcSd0ve8DO2ENbIuhWq-cAWnEtRy4bLc_aJaMO5MOVjwdZP-_yKh2oaK9ohhpcKt9OcyjNjSRzT8f69ukWY9xnpaxUGIEoxBXijKLzg9liHsa96mKEDQvrMPkYYCC_fzwu2vv35vLqvH3_dPax-PNZBajvXjYK2BdlpF5Vwxrk-BmtcZ3qrnLYh2tjqToOJnRZaRVTG2V5GHk1QELW8YNen3F2e_uyRZr9NFHAYYMRpT77EKNNq7QqpTmTIE1HG6Hc5bSEfvOD-KNFv_EmiP0r03PkisbR9eR8AFGCIGcaQ6F9vI23jnLCFuzlxWLZ9TZg9hYRjwD4Vj7Pvp_T_QX8B9uGKcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849475669</pqid></control><display><type>article</type><title>Survey on speech emotion recognition: Features, classification schemes, and databases</title><source>Elsevier ScienceDirect Journals</source><creator>El Ayadi, Moataz ; Kamel, Mohamed S. ; Karray, Fakhri</creator><creatorcontrib>El Ayadi, Moataz ; Kamel, Mohamed S. ; Karray, Fakhri</creatorcontrib><description>Recently, increasing attention has been directed to the study of the emotional content of speech signals, and hence, many systems have been proposed to identify the emotional content of a spoken utterance. This paper is a survey of speech emotion classification addressing three important aspects of the design of a speech emotion recognition system. The first one is the choice of suitable features for speech representation. The second issue is the design of an appropriate classification scheme and the third issue is the proper preparation of an emotional speech database for evaluating system performance. Conclusions about the performance and limitations of current speech emotion recognition systems are discussed in the last section of this survey. This section also suggests possible ways of improving speech emotion recognition systems.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2010.09.020</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Archetypal emotions ; Classification ; Design engineering ; Dimensionality reduction techniques ; Emotional speech databases ; Emotions ; Exact sciences and technology ; Information, signal and communications theory ; Pattern recognition ; Recognition ; Representations ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Speech ; Speech emotion recognition ; Speech processing ; Statistical classifiers ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2011-03, Vol.44 (3), p.572-587</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-24a55a3b69f419799dfc879b7d84968cf8f56b6a7fb6164fe4798d3f0f7c4af63</citedby><cites>FETCH-LOGICAL-c368t-24a55a3b69f419799dfc879b7d84968cf8f56b6a7fb6164fe4798d3f0f7c4af63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0031320310004619$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23829918$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>El Ayadi, Moataz</creatorcontrib><creatorcontrib>Kamel, Mohamed S.</creatorcontrib><creatorcontrib>Karray, Fakhri</creatorcontrib><title>Survey on speech emotion recognition: Features, classification schemes, and databases</title><title>Pattern recognition</title><description>Recently, increasing attention has been directed to the study of the emotional content of speech signals, and hence, many systems have been proposed to identify the emotional content of a spoken utterance. This paper is a survey of speech emotion classification addressing three important aspects of the design of a speech emotion recognition system. The first one is the choice of suitable features for speech representation. The second issue is the design of an appropriate classification scheme and the third issue is the proper preparation of an emotional speech database for evaluating system performance. Conclusions about the performance and limitations of current speech emotion recognition systems are discussed in the last section of this survey. This section also suggests possible ways of improving speech emotion recognition systems.</description><subject>Applied sciences</subject><subject>Archetypal emotions</subject><subject>Classification</subject><subject>Design engineering</subject><subject>Dimensionality reduction techniques</subject><subject>Emotional speech databases</subject><subject>Emotions</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Representations</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Speech</subject><subject>Speech emotion recognition</subject><subject>Speech processing</subject><subject>Statistical classifiers</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rGzEQhkVoIW6af5DDXkouXVdaafXRQ6CY5gMCPSQ-i1ntqJFZ77qadcD_vnIceuxJ0uiZd5iHsSvBl4IL_W2z3MEcpt_LhpcSd0ve8DO2ENbIuhWq-cAWnEtRy4bLc_aJaMO5MOVjwdZP-_yKh2oaK9ohhpcKt9OcyjNjSRzT8f69ukWY9xnpaxUGIEoxBXijKLzg9liHsa96mKEDQvrMPkYYCC_fzwu2vv35vLqvH3_dPax-PNZBajvXjYK2BdlpF5Vwxrk-BmtcZ3qrnLYh2tjqToOJnRZaRVTG2V5GHk1QELW8YNen3F2e_uyRZr9NFHAYYMRpT77EKNNq7QqpTmTIE1HG6Hc5bSEfvOD-KNFv_EmiP0r03PkisbR9eR8AFGCIGcaQ6F9vI23jnLCFuzlxWLZ9TZg9hYRjwD4Vj7Pvp_T_QX8B9uGKcw</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>El Ayadi, Moataz</creator><creator>Kamel, Mohamed S.</creator><creator>Karray, Fakhri</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Survey on speech emotion recognition: Features, classification schemes, and databases</title><author>El Ayadi, Moataz ; Kamel, Mohamed S. ; Karray, Fakhri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-24a55a3b69f419799dfc879b7d84968cf8f56b6a7fb6164fe4798d3f0f7c4af63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Archetypal emotions</topic><topic>Classification</topic><topic>Design engineering</topic><topic>Dimensionality reduction techniques</topic><topic>Emotional speech databases</topic><topic>Emotions</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Representations</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Speech</topic><topic>Speech emotion recognition</topic><topic>Speech processing</topic><topic>Statistical classifiers</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Ayadi, Moataz</creatorcontrib><creatorcontrib>Kamel, Mohamed S.</creatorcontrib><creatorcontrib>Karray, Fakhri</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Ayadi, Moataz</au><au>Kamel, Mohamed S.</au><au>Karray, Fakhri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on speech emotion recognition: Features, classification schemes, and databases</atitle><jtitle>Pattern recognition</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>44</volume><issue>3</issue><spage>572</spage><epage>587</epage><pages>572-587</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Recently, increasing attention has been directed to the study of the emotional content of speech signals, and hence, many systems have been proposed to identify the emotional content of a spoken utterance. This paper is a survey of speech emotion classification addressing three important aspects of the design of a speech emotion recognition system. The first one is the choice of suitable features for speech representation. The second issue is the design of an appropriate classification scheme and the third issue is the proper preparation of an emotional speech database for evaluating system performance. Conclusions about the performance and limitations of current speech emotion recognition systems are discussed in the last section of this survey. This section also suggests possible ways of improving speech emotion recognition systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2010.09.020</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2011-03, Vol.44 (3), p.572-587
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_849475669
source Elsevier ScienceDirect Journals
subjects Applied sciences
Archetypal emotions
Classification
Design engineering
Dimensionality reduction techniques
Emotional speech databases
Emotions
Exact sciences and technology
Information, signal and communications theory
Pattern recognition
Recognition
Representations
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Speech
Speech emotion recognition
Speech processing
Statistical classifiers
Telecommunications and information theory
title Survey on speech emotion recognition: Features, classification schemes, and databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20speech%20emotion%20recognition:%20Features,%20classification%20schemes,%20and%20databases&rft.jtitle=Pattern%20recognition&rft.au=El%20Ayadi,%20Moataz&rft.date=2011-03-01&rft.volume=44&rft.issue=3&rft.spage=572&rft.epage=587&rft.pages=572-587&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2010.09.020&rft_dat=%3Cproquest_cross%3E849475669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849475669&rft_id=info:pmid/&rft_els_id=S0031320310004619&rfr_iscdi=true