Partial and complete reduction of O sub(2) by hydrogen on transition metal surfaces

The metal-catalyzed reduction of di-oxygen (O sub(2)) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2010-09, Vol.604 (19-20), p.1565-1575
Hauptverfasser: d, Denise C, Nilekar, Anand Udaykumar, Xu, Ye, Mavrikakis, Manos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1575
container_issue 19-20
container_start_page 1565
container_title Surface science
container_volume 604
creator d, Denise C
Nilekar, Anand Udaykumar
Xu, Ye
Mavrikakis, Manos
description The metal-catalyzed reduction of di-oxygen (O sub(2)) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O sub(2) reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of VVVsurface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BE sub(O)), delineated by the opposite demands to catalyze O-O bond scission and O-H bond formation: The dissociative adsorption of O sub(2) prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O2 reduction, provide a unified basis for understanding the metal-catalyzed reduction of O sub(2) to H sub(2)O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products.
doi_str_mv 10.1016/j.susc.2010.05.026
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_849475095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849475095</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_8494750953</originalsourceid><addsrcrecordid>eNqNjDGOwjAQRV0sElngAlTTAQVhEpJA6hWIbleCHhlnwiZybPDYBbcnQhyA3zzp6ekLMU0wTjApVm3MgVWcYi8wjzEtvkSEuC6XBabbofhmbrFfVuaROP5J5xupQZoKlO1umjyBoyoo31gDtoZf4HCZpwu4POD_UTl7pd4b8E4abl5VR76_4OBqqYjHYlBLzTR5cyRm-93p57C8OXsPxP7cNaxIa2nIBj5vszLb5Fjm68_LJyGlSQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849475095</pqid></control><display><type>article</type><title>Partial and complete reduction of O sub(2) by hydrogen on transition metal surfaces</title><source>Access via ScienceDirect (Elsevier)</source><creator>d, Denise C ; Nilekar, Anand Udaykumar ; Xu, Ye ; Mavrikakis, Manos</creator><creatorcontrib>d, Denise C ; Nilekar, Anand Udaykumar ; Xu, Ye ; Mavrikakis, Manos</creatorcontrib><description>The metal-catalyzed reduction of di-oxygen (O sub(2)) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O sub(2) reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of VVVsurface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BE sub(O)), delineated by the opposite demands to catalyze O-O bond scission and O-H bond formation: The dissociative adsorption of O sub(2) prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O2 reduction, provide a unified basis for understanding the metal-catalyzed reduction of O sub(2) to H sub(2)O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products.</description><identifier>ISSN: 0039-6028</identifier><identifier>DOI: 10.1016/j.susc.2010.05.026</identifier><language>eng</language><subject>Gold ; Hydrogen storage ; Iridium ; Nickel ; Palladium ; Reduction ; Selectivity ; Silver</subject><ispartof>Surface science, 2010-09, Vol.604 (19-20), p.1565-1575</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>d, Denise C</creatorcontrib><creatorcontrib>Nilekar, Anand Udaykumar</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><title>Partial and complete reduction of O sub(2) by hydrogen on transition metal surfaces</title><title>Surface science</title><description>The metal-catalyzed reduction of di-oxygen (O sub(2)) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O sub(2) reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of VVVsurface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BE sub(O)), delineated by the opposite demands to catalyze O-O bond scission and O-H bond formation: The dissociative adsorption of O sub(2) prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O2 reduction, provide a unified basis for understanding the metal-catalyzed reduction of O sub(2) to H sub(2)O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products.</description><subject>Gold</subject><subject>Hydrogen storage</subject><subject>Iridium</subject><subject>Nickel</subject><subject>Palladium</subject><subject>Reduction</subject><subject>Selectivity</subject><subject>Silver</subject><issn>0039-6028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNjDGOwjAQRV0sElngAlTTAQVhEpJA6hWIbleCHhlnwiZybPDYBbcnQhyA3zzp6ekLMU0wTjApVm3MgVWcYi8wjzEtvkSEuC6XBabbofhmbrFfVuaROP5J5xupQZoKlO1umjyBoyoo31gDtoZf4HCZpwu4POD_UTl7pd4b8E4abl5VR76_4OBqqYjHYlBLzTR5cyRm-93p57C8OXsPxP7cNaxIa2nIBj5vszLb5Fjm68_LJyGlSQE</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>d, Denise C</creator><creator>Nilekar, Anand Udaykumar</creator><creator>Xu, Ye</creator><creator>Mavrikakis, Manos</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>Partial and complete reduction of O sub(2) by hydrogen on transition metal surfaces</title><author>d, Denise C ; Nilekar, Anand Udaykumar ; Xu, Ye ; Mavrikakis, Manos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_8494750953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Gold</topic><topic>Hydrogen storage</topic><topic>Iridium</topic><topic>Nickel</topic><topic>Palladium</topic><topic>Reduction</topic><topic>Selectivity</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>d, Denise C</creatorcontrib><creatorcontrib>Nilekar, Anand Udaykumar</creatorcontrib><creatorcontrib>Xu, Ye</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>d, Denise C</au><au>Nilekar, Anand Udaykumar</au><au>Xu, Ye</au><au>Mavrikakis, Manos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partial and complete reduction of O sub(2) by hydrogen on transition metal surfaces</atitle><jtitle>Surface science</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>604</volume><issue>19-20</issue><spage>1565</spage><epage>1575</epage><pages>1565-1575</pages><issn>0039-6028</issn><abstract>The metal-catalyzed reduction of di-oxygen (O sub(2)) by hydrogen is at the heart of direct synthesis of hydrogen peroxide (HOOH) and power generation by proton exchange membrane fuel cells. Despite its apparent simplicity, how the reaction proceeds on different metals is not yet well understood. We present a systematic study of O sub(2) reduction on the (111) facets of eight transition metals (Rh, Ir, Ni, Pd, Pt, Cu, Ag, and Au) based on periodic density functional theory (DFT-GGA) calculations. Analysis of VVVsurface elementary reaction steps suggests three selectivity regimes as a function of the binding energy of atomic oxygen (BE sub(O)), delineated by the opposite demands to catalyze O-O bond scission and O-H bond formation: The dissociative adsorption of O sub(2) prevails on Ni, Rh, Ir, and Cu; the complete reduction to water via associative (peroxyl, peroxide, and aquoxyl) mechanisms prevails on Pd, Pt, and Ag; and HOOH formation prevails on Au. The reducing power of hydrogen is decreased electrochemically by increasing the electrode potential. This hinders the hydrogenation of oxygen species and shifts the optimal selectivity for water to less reactive metals. Our results point to the important role of the intrinsic reactivity of metals in the selectivity of O2 reduction, provide a unified basis for understanding the metal-catalyzed reduction of O sub(2) to H sub(2)O and HOOH, and offer useful insights for identifying new catalysts for desired oxygen reduction products.</abstract><doi>10.1016/j.susc.2010.05.026</doi></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 2010-09, Vol.604 (19-20), p.1565-1575
issn 0039-6028
language eng
recordid cdi_proquest_miscellaneous_849475095
source Access via ScienceDirect (Elsevier)
subjects Gold
Hydrogen storage
Iridium
Nickel
Palladium
Reduction
Selectivity
Silver
title Partial and complete reduction of O sub(2) by hydrogen on transition metal surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partial%20and%20complete%20reduction%20of%20O%20sub(2)%20by%20hydrogen%20on%20transition%20metal%20surfaces&rft.jtitle=Surface%20science&rft.au=d,%20Denise%20C&rft.date=2010-09-01&rft.volume=604&rft.issue=19-20&rft.spage=1565&rft.epage=1575&rft.pages=1565-1575&rft.issn=0039-6028&rft_id=info:doi/10.1016/j.susc.2010.05.026&rft_dat=%3Cproquest%3E849475095%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849475095&rft_id=info:pmid/&rfr_iscdi=true