Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator
This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the syste...
Gespeichert in:
Veröffentlicht in: | Communications in nonlinear science & numerical simulation 2011-02, Vol.16 (2), p.1089-1097 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1097 |
---|---|
container_issue | 2 |
container_start_page | 1089 |
container_title | Communications in nonlinear science & numerical simulation |
container_volume | 16 |
creator | Manevitch, L.I. Kovaleva, A.S. Manevitch, E.L. Shepelev, D.S. |
description | This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations. |
doi_str_mv | 10.1016/j.cnsns.2010.04.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849474067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570410002078</els_id><sourcerecordid>849474067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwBFx845RgJ3acHDhU5VeqBIfeLdfZUEetXbxuJR6A98ZtQeLEySvvzGjny7JrRgtGWX07FMahw6Kk6YfygrL2JBuxRja5LCU_TTOlMheS8vPsAnGgydUKPsq-ZnZto3XvZLPUCCQGPYCJPlhAol1HnHc5Rh2tdzp8kgCYBmeAeDR2tToskPiexCWQ-23f77N-dz4U5E2HSFhBJoeoziLaTXLt4I_qMjvr9Qrh6ucdZ_PHh_n0OZ-9Pr1MJ7PcVJWIOWclbWqxEBXTtWDG9LyrNXRmUQmxoHWVtr1JJbWkpWylaEzXVI2kHdMLkNU4uznGboL_2AJGtbZoIN3gwG9RNbzlktN6r6yOShM8YoBebYJdJwCKUbVHrgZ1QK72yBXlKiFPrrujC1KHnYWgUkNIsDobElTVefuv_xvpZY29</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849474067</pqid></control><display><type>article</type><title>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Manevitch, L.I. ; Kovaleva, A.S. ; Manevitch, E.L. ; Shepelev, D.S.</creator><creatorcontrib>Manevitch, L.I. ; Kovaleva, A.S. ; Manevitch, E.L. ; Shepelev, D.S.</creatorcontrib><description>This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2010.04.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic properties ; Computer simulation ; Constraining ; Duffing oscillators ; Limiting phase trajectories ; Mathematical models ; Oscillators ; Phase transitions ; Resonance oscillations ; Trajectories</subject><ispartof>Communications in nonlinear science & numerical simulation, 2011-02, Vol.16 (2), p.1089-1097</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</citedby><cites>FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570410002078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Manevitch, L.I.</creatorcontrib><creatorcontrib>Kovaleva, A.S.</creatorcontrib><creatorcontrib>Manevitch, E.L.</creatorcontrib><creatorcontrib>Shepelev, D.S.</creatorcontrib><title>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</title><title>Communications in nonlinear science & numerical simulation</title><description>This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Duffing oscillators</subject><subject>Limiting phase trajectories</subject><subject>Mathematical models</subject><subject>Oscillators</subject><subject>Phase transitions</subject><subject>Resonance oscillations</subject><subject>Trajectories</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhCMEEqXwBFx845RgJ3acHDhU5VeqBIfeLdfZUEetXbxuJR6A98ZtQeLEySvvzGjny7JrRgtGWX07FMahw6Kk6YfygrL2JBuxRja5LCU_TTOlMheS8vPsAnGgydUKPsq-ZnZto3XvZLPUCCQGPYCJPlhAol1HnHc5Rh2tdzp8kgCYBmeAeDR2tToskPiexCWQ-23f77N-dz4U5E2HSFhBJoeoziLaTXLt4I_qMjvr9Qrh6ucdZ_PHh_n0OZ-9Pr1MJ7PcVJWIOWclbWqxEBXTtWDG9LyrNXRmUQmxoHWVtr1JJbWkpWylaEzXVI2kHdMLkNU4uznGboL_2AJGtbZoIN3gwG9RNbzlktN6r6yOShM8YoBebYJdJwCKUbVHrgZ1QK72yBXlKiFPrrujC1KHnYWgUkNIsDobElTVefuv_xvpZY29</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Manevitch, L.I.</creator><creator>Kovaleva, A.S.</creator><creator>Manevitch, E.L.</creator><creator>Shepelev, D.S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</title><author>Manevitch, L.I. ; Kovaleva, A.S. ; Manevitch, E.L. ; Shepelev, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Duffing oscillators</topic><topic>Limiting phase trajectories</topic><topic>Mathematical models</topic><topic>Oscillators</topic><topic>Phase transitions</topic><topic>Resonance oscillations</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manevitch, L.I.</creatorcontrib><creatorcontrib>Kovaleva, A.S.</creatorcontrib><creatorcontrib>Manevitch, E.L.</creatorcontrib><creatorcontrib>Shepelev, D.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science & numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manevitch, L.I.</au><au>Kovaleva, A.S.</au><au>Manevitch, E.L.</au><au>Shepelev, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</atitle><jtitle>Communications in nonlinear science & numerical simulation</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>16</volume><issue>2</issue><spage>1089</spage><epage>1097</epage><pages>1089-1097</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2010.04.019</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-5704 |
ispartof | Communications in nonlinear science & numerical simulation, 2011-02, Vol.16 (2), p.1089-1097 |
issn | 1007-5704 1878-7274 |
language | eng |
recordid | cdi_proquest_miscellaneous_849474067 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Approximation Asymptotic methods Asymptotic properties Computer simulation Constraining Duffing oscillators Limiting phase trajectories Mathematical models Oscillators Phase transitions Resonance oscillations Trajectories |
title | Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20phase%20trajectories%20and%20non-stationary%20resonance%20oscillations%20of%20the%20Duffing%20oscillator.%20Part%201.%20A%20non-dissipative%20oscillator&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Manevitch,%20L.I.&rft.date=2011-02-01&rft.volume=16&rft.issue=2&rft.spage=1089&rft.epage=1097&rft.pages=1089-1097&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2010.04.019&rft_dat=%3Cproquest_cross%3E849474067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849474067&rft_id=info:pmid/&rft_els_id=S1007570410002078&rfr_iscdi=true |