Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator

This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in nonlinear science & numerical simulation 2011-02, Vol.16 (2), p.1089-1097
Hauptverfasser: Manevitch, L.I., Kovaleva, A.S., Manevitch, E.L., Shepelev, D.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1097
container_issue 2
container_start_page 1089
container_title Communications in nonlinear science & numerical simulation
container_volume 16
creator Manevitch, L.I.
Kovaleva, A.S.
Manevitch, E.L.
Shepelev, D.S.
description This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.
doi_str_mv 10.1016/j.cnsns.2010.04.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849474067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1007570410002078</els_id><sourcerecordid>849474067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwBFx845RgJ3acHDhU5VeqBIfeLdfZUEetXbxuJR6A98ZtQeLEySvvzGjny7JrRgtGWX07FMahw6Kk6YfygrL2JBuxRja5LCU_TTOlMheS8vPsAnGgydUKPsq-ZnZto3XvZLPUCCQGPYCJPlhAol1HnHc5Rh2tdzp8kgCYBmeAeDR2tToskPiexCWQ-23f77N-dz4U5E2HSFhBJoeoziLaTXLt4I_qMjvr9Qrh6ucdZ_PHh_n0OZ-9Pr1MJ7PcVJWIOWclbWqxEBXTtWDG9LyrNXRmUQmxoHWVtr1JJbWkpWylaEzXVI2kHdMLkNU4uznGboL_2AJGtbZoIN3gwG9RNbzlktN6r6yOShM8YoBebYJdJwCKUbVHrgZ1QK72yBXlKiFPrrujC1KHnYWgUkNIsDobElTVefuv_xvpZY29</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849474067</pqid></control><display><type>article</type><title>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Manevitch, L.I. ; Kovaleva, A.S. ; Manevitch, E.L. ; Shepelev, D.S.</creator><creatorcontrib>Manevitch, L.I. ; Kovaleva, A.S. ; Manevitch, E.L. ; Shepelev, D.S.</creatorcontrib><description>This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.</description><identifier>ISSN: 1007-5704</identifier><identifier>EISSN: 1878-7274</identifier><identifier>DOI: 10.1016/j.cnsns.2010.04.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic properties ; Computer simulation ; Constraining ; Duffing oscillators ; Limiting phase trajectories ; Mathematical models ; Oscillators ; Phase transitions ; Resonance oscillations ; Trajectories</subject><ispartof>Communications in nonlinear science &amp; numerical simulation, 2011-02, Vol.16 (2), p.1089-1097</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</citedby><cites>FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1007570410002078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Manevitch, L.I.</creatorcontrib><creatorcontrib>Kovaleva, A.S.</creatorcontrib><creatorcontrib>Manevitch, E.L.</creatorcontrib><creatorcontrib>Shepelev, D.S.</creatorcontrib><title>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</title><title>Communications in nonlinear science &amp; numerical simulation</title><description>This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Duffing oscillators</subject><subject>Limiting phase trajectories</subject><subject>Mathematical models</subject><subject>Oscillators</subject><subject>Phase transitions</subject><subject>Resonance oscillations</subject><subject>Trajectories</subject><issn>1007-5704</issn><issn>1878-7274</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhCMEEqXwBFx845RgJ3acHDhU5VeqBIfeLdfZUEetXbxuJR6A98ZtQeLEySvvzGjny7JrRgtGWX07FMahw6Kk6YfygrL2JBuxRja5LCU_TTOlMheS8vPsAnGgydUKPsq-ZnZto3XvZLPUCCQGPYCJPlhAol1HnHc5Rh2tdzp8kgCYBmeAeDR2tToskPiexCWQ-23f77N-dz4U5E2HSFhBJoeoziLaTXLt4I_qMjvr9Qrh6ucdZ_PHh_n0OZ-9Pr1MJ7PcVJWIOWclbWqxEBXTtWDG9LyrNXRmUQmxoHWVtr1JJbWkpWylaEzXVI2kHdMLkNU4uznGboL_2AJGtbZoIN3gwG9RNbzlktN6r6yOShM8YoBebYJdJwCKUbVHrgZ1QK72yBXlKiFPrrujC1KHnYWgUkNIsDobElTVefuv_xvpZY29</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Manevitch, L.I.</creator><creator>Kovaleva, A.S.</creator><creator>Manevitch, E.L.</creator><creator>Shepelev, D.S.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110201</creationdate><title>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</title><author>Manevitch, L.I. ; Kovaleva, A.S. ; Manevitch, E.L. ; Shepelev, D.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-4120865b531a651ccf4d6aedcb355b063086fc704a70279758cd83870d1abe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Duffing oscillators</topic><topic>Limiting phase trajectories</topic><topic>Mathematical models</topic><topic>Oscillators</topic><topic>Phase transitions</topic><topic>Resonance oscillations</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manevitch, L.I.</creatorcontrib><creatorcontrib>Kovaleva, A.S.</creatorcontrib><creatorcontrib>Manevitch, E.L.</creatorcontrib><creatorcontrib>Shepelev, D.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manevitch, L.I.</au><au>Kovaleva, A.S.</au><au>Manevitch, E.L.</au><au>Shepelev, D.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator</atitle><jtitle>Communications in nonlinear science &amp; numerical simulation</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>16</volume><issue>2</issue><spage>1089</spage><epage>1097</epage><pages>1089-1097</pages><issn>1007-5704</issn><eissn>1878-7274</eissn><abstract>This paper demonstrates an analytical description of the non-stationary resonance response of the Duffing system subject to 1:1 resonance. The approximate procedure is based on a recently introduced concept of the limiting phase trajectories (LPTs). The LPT is understood as a trajectory of the system with the initial rest state, and thus corresponds to the most intensive energy transfer from an external source of harmonic excitation to the oscillator. It is shown that the LPT of the Duffing system is similar to the trajectory of a free particle moving between two motion-limiters. The use of special non-smooth transformations gives an explicit asymptotic expression of the LPT of the resonance Duffing oscillators. The theoretical results are confirmed by numerical simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cnsns.2010.04.019</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-5704
ispartof Communications in nonlinear science & numerical simulation, 2011-02, Vol.16 (2), p.1089-1097
issn 1007-5704
1878-7274
language eng
recordid cdi_proquest_miscellaneous_849474067
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Asymptotic methods
Asymptotic properties
Computer simulation
Constraining
Duffing oscillators
Limiting phase trajectories
Mathematical models
Oscillators
Phase transitions
Resonance oscillations
Trajectories
title Limiting phase trajectories and non-stationary resonance oscillations of the Duffing oscillator. Part 1. A non-dissipative oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20phase%20trajectories%20and%20non-stationary%20resonance%20oscillations%20of%20the%20Duffing%20oscillator.%20Part%201.%20A%20non-dissipative%20oscillator&rft.jtitle=Communications%20in%20nonlinear%20science%20&%20numerical%20simulation&rft.au=Manevitch,%20L.I.&rft.date=2011-02-01&rft.volume=16&rft.issue=2&rft.spage=1089&rft.epage=1097&rft.pages=1089-1097&rft.issn=1007-5704&rft.eissn=1878-7274&rft_id=info:doi/10.1016/j.cnsns.2010.04.019&rft_dat=%3Cproquest_cross%3E849474067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849474067&rft_id=info:pmid/&rft_els_id=S1007570410002078&rfr_iscdi=true