Combining multiple clusterings using similarity graph
Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scal...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2011-03, Vol.44 (3), p.694-703 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 703 |
---|---|
container_issue | 3 |
container_start_page | 694 |
container_title | Pattern recognition |
container_volume | 44 |
creator | Mimaroglu, Selim Erdil, Ertunc |
description | Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method. |
doi_str_mv | 10.1016/j.patcog.2010.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849473758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320310004486</els_id><sourcerecordid>849473758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-Aw-9iKfWPPpILoIsvmDBi55DMp2uWdKHSSv47e3SxaOngf9jhvkRcs1oxigr7_bZYEbodxmns0RVRqk8ISsmK5EWLOenZEWpYKngVJyTixj3lLJqNlak2PStdZ3rdkk7-dENHhPwUxwxzFpMpniwomudN8GNP8kumOHzkpw1xke8Os41-Xh6fN-8pNu359fNwzYFUcoxZcqgKIHbmio0DbOlAFNJWZe84ZUtQSFSm1vEqrBQokBoTJE3UEPJra3Fmtwue4fQf00YR926COi96bCfopa5yitRFXJO5ksSQh9jwEYPwbUm_GhG9QGS3usFkj5A0lTpGdJcuzkeMBGMb4LpwMW_LheSK8UPufslh_O33w6DjuCwA6xdQBh13bv_D_0CKsqBAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849473758</pqid></control><display><type>article</type><title>Combining multiple clusterings using similarity graph</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mimaroglu, Selim ; Erdil, Ertunc</creator><creatorcontrib>Mimaroglu, Selim ; Erdil, Ertunc</creatorcontrib><description>Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2010.09.008</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cluster ensemble ; Clustering ; Clusters ; Combining clustering partitions ; Evidence accumulation ; Exact sciences and technology ; Graphs ; Information, signal and communications theory ; Mutual information ; Pattern recognition ; Robust clustering ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Similarity ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2011-03, Vol.44 (3), p.694-703</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</citedby><cites>FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2010.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23829928$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mimaroglu, Selim</creatorcontrib><creatorcontrib>Erdil, Ertunc</creatorcontrib><title>Combining multiple clusterings using similarity graph</title><title>Pattern recognition</title><description>Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.</description><subject>Applied sciences</subject><subject>Cluster ensemble</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Combining clustering partitions</subject><subject>Evidence accumulation</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information, signal and communications theory</subject><subject>Mutual information</subject><subject>Pattern recognition</subject><subject>Robust clustering</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Similarity</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-Aw-9iKfWPPpILoIsvmDBi55DMp2uWdKHSSv47e3SxaOngf9jhvkRcs1oxigr7_bZYEbodxmns0RVRqk8ISsmK5EWLOenZEWpYKngVJyTixj3lLJqNlak2PStdZ3rdkk7-dENHhPwUxwxzFpMpniwomudN8GNP8kumOHzkpw1xke8Os41-Xh6fN-8pNu359fNwzYFUcoxZcqgKIHbmio0DbOlAFNJWZe84ZUtQSFSm1vEqrBQokBoTJE3UEPJra3Fmtwue4fQf00YR926COi96bCfopa5yitRFXJO5ksSQh9jwEYPwbUm_GhG9QGS3usFkj5A0lTpGdJcuzkeMBGMb4LpwMW_LheSK8UPufslh_O33w6DjuCwA6xdQBh13bv_D_0CKsqBAg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Mimaroglu, Selim</creator><creator>Erdil, Ertunc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Combining multiple clusterings using similarity graph</title><author>Mimaroglu, Selim ; Erdil, Ertunc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Cluster ensemble</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Combining clustering partitions</topic><topic>Evidence accumulation</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information, signal and communications theory</topic><topic>Mutual information</topic><topic>Pattern recognition</topic><topic>Robust clustering</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Similarity</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimaroglu, Selim</creatorcontrib><creatorcontrib>Erdil, Ertunc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimaroglu, Selim</au><au>Erdil, Ertunc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining multiple clusterings using similarity graph</atitle><jtitle>Pattern recognition</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>44</volume><issue>3</issue><spage>694</spage><epage>703</epage><pages>694-703</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2010.09.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2011-03, Vol.44 (3), p.694-703 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_849473758 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Cluster ensemble Clustering Clusters Combining clustering partitions Evidence accumulation Exact sciences and technology Graphs Information, signal and communications theory Mutual information Pattern recognition Robust clustering Signal and communications theory Signal representation. Spectral analysis Signal, noise Similarity Telecommunications and information theory |
title | Combining multiple clusterings using similarity graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20multiple%20clusterings%20using%20similarity%20graph&rft.jtitle=Pattern%20recognition&rft.au=Mimaroglu,%20Selim&rft.date=2011-03-01&rft.volume=44&rft.issue=3&rft.spage=694&rft.epage=703&rft.pages=694-703&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2010.09.008&rft_dat=%3Cproquest_cross%3E849473758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849473758&rft_id=info:pmid/&rft_els_id=S0031320310004486&rfr_iscdi=true |