Combining multiple clusterings using similarity graph

Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2011-03, Vol.44 (3), p.694-703
Hauptverfasser: Mimaroglu, Selim, Erdil, Ertunc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 3
container_start_page 694
container_title Pattern recognition
container_volume 44
creator Mimaroglu, Selim
Erdil, Ertunc
description Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.
doi_str_mv 10.1016/j.patcog.2010.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849473758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0031320310004486</els_id><sourcerecordid>849473758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouK5-Aw-9iKfWPPpILoIsvmDBi55DMp2uWdKHSSv47e3SxaOngf9jhvkRcs1oxigr7_bZYEbodxmns0RVRqk8ISsmK5EWLOenZEWpYKngVJyTixj3lLJqNlak2PStdZ3rdkk7-dENHhPwUxwxzFpMpniwomudN8GNP8kumOHzkpw1xke8Os41-Xh6fN-8pNu359fNwzYFUcoxZcqgKIHbmio0DbOlAFNJWZe84ZUtQSFSm1vEqrBQokBoTJE3UEPJra3Fmtwue4fQf00YR926COi96bCfopa5yitRFXJO5ksSQh9jwEYPwbUm_GhG9QGS3usFkj5A0lTpGdJcuzkeMBGMb4LpwMW_LheSK8UPufslh_O33w6DjuCwA6xdQBh13bv_D_0CKsqBAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849473758</pqid></control><display><type>article</type><title>Combining multiple clusterings using similarity graph</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mimaroglu, Selim ; Erdil, Ertunc</creator><creatorcontrib>Mimaroglu, Selim ; Erdil, Ertunc</creatorcontrib><description>Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2010.09.008</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cluster ensemble ; Clustering ; Clusters ; Combining clustering partitions ; Evidence accumulation ; Exact sciences and technology ; Graphs ; Information, signal and communications theory ; Mutual information ; Pattern recognition ; Robust clustering ; Signal and communications theory ; Signal representation. Spectral analysis ; Signal, noise ; Similarity ; Telecommunications and information theory</subject><ispartof>Pattern recognition, 2011-03, Vol.44 (3), p.694-703</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</citedby><cites>FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.patcog.2010.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23829928$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mimaroglu, Selim</creatorcontrib><creatorcontrib>Erdil, Ertunc</creatorcontrib><title>Combining multiple clusterings using similarity graph</title><title>Pattern recognition</title><description>Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.</description><subject>Applied sciences</subject><subject>Cluster ensemble</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Combining clustering partitions</subject><subject>Evidence accumulation</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Information, signal and communications theory</subject><subject>Mutual information</subject><subject>Pattern recognition</subject><subject>Robust clustering</subject><subject>Signal and communications theory</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Similarity</subject><subject>Telecommunications and information theory</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAQx4MouK5-Aw-9iKfWPPpILoIsvmDBi55DMp2uWdKHSSv47e3SxaOngf9jhvkRcs1oxigr7_bZYEbodxmns0RVRqk8ISsmK5EWLOenZEWpYKngVJyTixj3lLJqNlak2PStdZ3rdkk7-dENHhPwUxwxzFpMpniwomudN8GNP8kumOHzkpw1xke8Os41-Xh6fN-8pNu359fNwzYFUcoxZcqgKIHbmio0DbOlAFNJWZe84ZUtQSFSm1vEqrBQokBoTJE3UEPJra3Fmtwue4fQf00YR926COi96bCfopa5yitRFXJO5ksSQh9jwEYPwbUm_GhG9QGS3usFkj5A0lTpGdJcuzkeMBGMb4LpwMW_LheSK8UPufslh_O33w6DjuCwA6xdQBh13bv_D_0CKsqBAg</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Mimaroglu, Selim</creator><creator>Erdil, Ertunc</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Combining multiple clusterings using similarity graph</title><author>Mimaroglu, Selim ; Erdil, Ertunc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-19ae36c2bd09eaf1b63ca788d62f27b6c9ee0b4bee75bc6e3ecfa54fcdc62bbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Cluster ensemble</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Combining clustering partitions</topic><topic>Evidence accumulation</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Information, signal and communications theory</topic><topic>Mutual information</topic><topic>Pattern recognition</topic><topic>Robust clustering</topic><topic>Signal and communications theory</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Similarity</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mimaroglu, Selim</creatorcontrib><creatorcontrib>Erdil, Ertunc</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mimaroglu, Selim</au><au>Erdil, Ertunc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining multiple clusterings using similarity graph</atitle><jtitle>Pattern recognition</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>44</volume><issue>3</issue><spage>694</spage><epage>703</epage><pages>694-703</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>Multiple clusterings are produced for various needs and reasons in both distributed and local environments. Combining multiple clusterings into a final clustering which has better overall quality has gained importance recently. It is also expected that the final clustering is novel, robust, and scalable. In order to solve this challenging problem we introduce a new graph-based method. Our method uses the evidence accumulated in the previously obtained clusterings, and produces a very good quality final clustering. The number of clusters in the final clustering is obtained automatically; this is another important advantage of our technique. Experimental test results on real and synthetically generated data sets demonstrate the effectiveness of our new method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2010.09.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-3203
ispartof Pattern recognition, 2011-03, Vol.44 (3), p.694-703
issn 0031-3203
1873-5142
language eng
recordid cdi_proquest_miscellaneous_849473758
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cluster ensemble
Clustering
Clusters
Combining clustering partitions
Evidence accumulation
Exact sciences and technology
Graphs
Information, signal and communications theory
Mutual information
Pattern recognition
Robust clustering
Signal and communications theory
Signal representation. Spectral analysis
Signal, noise
Similarity
Telecommunications and information theory
title Combining multiple clusterings using similarity graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20multiple%20clusterings%20using%20similarity%20graph&rft.jtitle=Pattern%20recognition&rft.au=Mimaroglu,%20Selim&rft.date=2011-03-01&rft.volume=44&rft.issue=3&rft.spage=694&rft.epage=703&rft.pages=694-703&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2010.09.008&rft_dat=%3Cproquest_cross%3E849473758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849473758&rft_id=info:pmid/&rft_els_id=S0031320310004486&rfr_iscdi=true