Suzaku Monitoring of the Seyfert 1 Galaxy NGC 5548: Warm Absorber Location and Its Implication for Cosmic Feedback

We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of {approx}30 ks each), separated by {approx}1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2010-02, Vol.710 (1), p.360-371
Hauptverfasser: Krongold, Y, Elvis, M, Andrade-Velazquez, M, Nicastro, F, Mathur, S, Reeves, J. N, Brickhouse, N. S, Binette, L, Jimenez-Bailon, E, Grupe, D, Liu, Y, McHardy, I. M, Minezaki, T, Yoshii, Y, Wilkes, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 371
container_issue 1
container_start_page 360
container_title The Astrophysical journal
container_volume 710
creator Krongold, Y
Elvis, M
Andrade-Velazquez, M
Nicastro, F
Mathur, S
Reeves, J. N
Brickhouse, N. S
Binette, L
Jimenez-Bailon, E
Grupe, D
Liu, Y
McHardy, I. M
Minezaki, T
Yoshii, Y
Wilkes, B
description We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of {approx}30 ks each), separated by {approx}1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of {approx}4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U{sub X} {approx} -0.85), and high outflow velocity (v{sub out} {approx} 1040 km s{sup -1}), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U{sub X} {approx} -2.8), low velocity (v{sub out} {approx} 590 km s{sup -1}) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n{sub e} < 2.0 x 10{sup 7} cm{sup -3} for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R>0.033 pc; R>5000R{sub S} ). If the variations in the low ionization, low velocity component are real, they imply n{sub e} >9.8 x 10{sup 4} cm{sup -3} and R < 3 pc. We discuss our results in terms of two different scenarios: a large-scale outflow originating in the inner parts of the accretion disk, or a thermally driven wind originating much farther out. Given the large distance of the wind, the implied mass outflow rate is also large; the mass outflow is dominated by the high ionization component). The associated total kinetic energy deployed by the wind in the host galaxy (>1.2 x 10{sup 56} erg) can be enough to disrupt the interstellar medium, possibly quenching or regulating large-scale star formation. However, the total mass and energy ejected by the wind may still be lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing th
doi_str_mv 10.1088/0004-637X/710/1/360
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_849472286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849472286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-8f2cf99fb27546e0754e91bf7c18b8557fde84dabf23d9b77b3ccdbdd3ba26063</originalsourceid><addsrcrecordid>eNqNkc1qFEEUhQtRcIw-QTYFIoLQmfrrrmp3YTCTgVEXMSS7on5Nme6uTlUNOD6Nz-KTpZsZstGFm3u5h--cxbkAnGJ0hpEQS4QQqxrKb5ccoyVe0gY9AwtcU1ExWvPnYPFEvASvcv4xn6RtFyBf7X6p-x38HIdQYgrDdxg9LHcOXrm9d6lADNeqUz_38Mt69ed3XTPxEd6o1MNznWPSLsFtNKqEOEA1WLgpGW76sQtHzccEVzH3wcAL56xW5v41eOFVl92b4z4B1xefvq0uq-3X9WZ1vq0MZbRUwhPj29ZrwmvWODRN12LtucFCi7rm3jrBrNKeUNtqzjU1xmprqVakQQ09AW8PuTGXILMJxZk7E4fBmSIJpi2rEZ6o9wdqTPFh53KRfcjGdZ0aXNxlKVjLOCFizqMH0qSYc3Jejin0Ku0lRnL-g5xrlXPLks-SnP4wud4d81U2qvNJDSbkJyuhrG455hN3duBCHP8z-MPfhn-AcrSePgKbb6MQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849472286</pqid></control><display><type>article</type><title>Suzaku Monitoring of the Seyfert 1 Galaxy NGC 5548: Warm Absorber Location and Its Implication for Cosmic Feedback</title><source>Institute of Physics Open Access Journal Titles</source><creator>Krongold, Y ; Elvis, M ; Andrade-Velazquez, M ; Nicastro, F ; Mathur, S ; Reeves, J. N ; Brickhouse, N. S ; Binette, L ; Jimenez-Bailon, E ; Grupe, D ; Liu, Y ; McHardy, I. M ; Minezaki, T ; Yoshii, Y ; Wilkes, B</creator><creatorcontrib>Krongold, Y ; Elvis, M ; Andrade-Velazquez, M ; Nicastro, F ; Mathur, S ; Reeves, J. N ; Brickhouse, N. S ; Binette, L ; Jimenez-Bailon, E ; Grupe, D ; Liu, Y ; McHardy, I. M ; Minezaki, T ; Yoshii, Y ; Wilkes, B</creatorcontrib><description>We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of {approx}30 ks each), separated by {approx}1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of {approx}4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U{sub X} {approx} -0.85), and high outflow velocity (v{sub out} {approx} 1040 km s{sup -1}), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U{sub X} {approx} -2.8), low velocity (v{sub out} {approx} 590 km s{sup -1}) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n{sub e} &lt; 2.0 x 10{sup 7} cm{sup -3} for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R&gt;0.033 pc; R&gt;5000R{sub S} ). If the variations in the low ionization, low velocity component are real, they imply n{sub e} &gt;9.8 x 10{sup 4} cm{sup -3} and R &lt; 3 pc. We discuss our results in terms of two different scenarios: a large-scale outflow originating in the inner parts of the accretion disk, or a thermally driven wind originating much farther out. Given the large distance of the wind, the implied mass outflow rate is also large; the mass outflow is dominated by the high ionization component). The associated total kinetic energy deployed by the wind in the host galaxy (&gt;1.2 x 10{sup 56} erg) can be enough to disrupt the interstellar medium, possibly quenching or regulating large-scale star formation. However, the total mass and energy ejected by the wind may still be lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing the wind before it is fully accelerated.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/710/1/360</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>ABSORPTION ; ACCRETION DISKS ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; COSMIC RADIO SOURCES ; Earth, ocean, space ; ELECTROMAGNETIC RADIATION ; ELECTRON DENSITY ; ENERGY ; EQUILIBRIUM ; Exact sciences and technology ; GALAXIES ; IONIZATION ; IONIZING RADIATIONS ; KINETIC ENERGY ; LUMINOSITY ; MASS ; MEASURING INSTRUMENTS ; OPTICAL PROPERTIES ; PHOTOIONIZATION ; PHYSICAL PROPERTIES ; QUASARS ; RADIATIONS ; SIMULATION ; SOFT X RADIATION ; SORPTION ; SPECTROMETERS ; STARS ; X RADIATION</subject><ispartof>The Astrophysical journal, 2010-02, Vol.710 (1), p.360-371</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-8f2cf99fb27546e0754e91bf7c18b8557fde84dabf23d9b77b3ccdbdd3ba26063</citedby><cites>FETCH-LOGICAL-c343t-8f2cf99fb27546e0754e91bf7c18b8557fde84dabf23d9b77b3ccdbdd3ba26063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0004-637X/710/1/360/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/0004-637X/710/1/360$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23459717$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21394501$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Krongold, Y</creatorcontrib><creatorcontrib>Elvis, M</creatorcontrib><creatorcontrib>Andrade-Velazquez, M</creatorcontrib><creatorcontrib>Nicastro, F</creatorcontrib><creatorcontrib>Mathur, S</creatorcontrib><creatorcontrib>Reeves, J. N</creatorcontrib><creatorcontrib>Brickhouse, N. S</creatorcontrib><creatorcontrib>Binette, L</creatorcontrib><creatorcontrib>Jimenez-Bailon, E</creatorcontrib><creatorcontrib>Grupe, D</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>McHardy, I. M</creatorcontrib><creatorcontrib>Minezaki, T</creatorcontrib><creatorcontrib>Yoshii, Y</creatorcontrib><creatorcontrib>Wilkes, B</creatorcontrib><title>Suzaku Monitoring of the Seyfert 1 Galaxy NGC 5548: Warm Absorber Location and Its Implication for Cosmic Feedback</title><title>The Astrophysical journal</title><description>We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of {approx}30 ks each), separated by {approx}1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of {approx}4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U{sub X} {approx} -0.85), and high outflow velocity (v{sub out} {approx} 1040 km s{sup -1}), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U{sub X} {approx} -2.8), low velocity (v{sub out} {approx} 590 km s{sup -1}) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n{sub e} &lt; 2.0 x 10{sup 7} cm{sup -3} for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R&gt;0.033 pc; R&gt;5000R{sub S} ). If the variations in the low ionization, low velocity component are real, they imply n{sub e} &gt;9.8 x 10{sup 4} cm{sup -3} and R &lt; 3 pc. We discuss our results in terms of two different scenarios: a large-scale outflow originating in the inner parts of the accretion disk, or a thermally driven wind originating much farther out. Given the large distance of the wind, the implied mass outflow rate is also large; the mass outflow is dominated by the high ionization component). The associated total kinetic energy deployed by the wind in the host galaxy (&gt;1.2 x 10{sup 56} erg) can be enough to disrupt the interstellar medium, possibly quenching or regulating large-scale star formation. However, the total mass and energy ejected by the wind may still be lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing the wind before it is fully accelerated.</description><subject>ABSORPTION</subject><subject>ACCRETION DISKS</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>COSMIC RADIO SOURCES</subject><subject>Earth, ocean, space</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELECTRON DENSITY</subject><subject>ENERGY</subject><subject>EQUILIBRIUM</subject><subject>Exact sciences and technology</subject><subject>GALAXIES</subject><subject>IONIZATION</subject><subject>IONIZING RADIATIONS</subject><subject>KINETIC ENERGY</subject><subject>LUMINOSITY</subject><subject>MASS</subject><subject>MEASURING INSTRUMENTS</subject><subject>OPTICAL PROPERTIES</subject><subject>PHOTOIONIZATION</subject><subject>PHYSICAL PROPERTIES</subject><subject>QUASARS</subject><subject>RADIATIONS</subject><subject>SIMULATION</subject><subject>SOFT X RADIATION</subject><subject>SORPTION</subject><subject>SPECTROMETERS</subject><subject>STARS</subject><subject>X RADIATION</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkc1qFEEUhQtRcIw-QTYFIoLQmfrrrmp3YTCTgVEXMSS7on5Nme6uTlUNOD6Nz-KTpZsZstGFm3u5h--cxbkAnGJ0hpEQS4QQqxrKb5ccoyVe0gY9AwtcU1ExWvPnYPFEvASvcv4xn6RtFyBf7X6p-x38HIdQYgrDdxg9LHcOXrm9d6lADNeqUz_38Mt69ed3XTPxEd6o1MNznWPSLsFtNKqEOEA1WLgpGW76sQtHzccEVzH3wcAL56xW5v41eOFVl92b4z4B1xefvq0uq-3X9WZ1vq0MZbRUwhPj29ZrwmvWODRN12LtucFCi7rm3jrBrNKeUNtqzjU1xmprqVakQQ09AW8PuTGXILMJxZk7E4fBmSIJpi2rEZ6o9wdqTPFh53KRfcjGdZ0aXNxlKVjLOCFizqMH0qSYc3Jejin0Ku0lRnL-g5xrlXPLks-SnP4wud4d81U2qvNJDSbkJyuhrG455hN3duBCHP8z-MPfhn-AcrSePgKbb6MQ</recordid><startdate>20100210</startdate><enddate>20100210</enddate><creator>Krongold, Y</creator><creator>Elvis, M</creator><creator>Andrade-Velazquez, M</creator><creator>Nicastro, F</creator><creator>Mathur, S</creator><creator>Reeves, J. N</creator><creator>Brickhouse, N. S</creator><creator>Binette, L</creator><creator>Jimenez-Bailon, E</creator><creator>Grupe, D</creator><creator>Liu, Y</creator><creator>McHardy, I. M</creator><creator>Minezaki, T</creator><creator>Yoshii, Y</creator><creator>Wilkes, B</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20100210</creationdate><title>Suzaku Monitoring of the Seyfert 1 Galaxy NGC 5548: Warm Absorber Location and Its Implication for Cosmic Feedback</title><author>Krongold, Y ; Elvis, M ; Andrade-Velazquez, M ; Nicastro, F ; Mathur, S ; Reeves, J. N ; Brickhouse, N. S ; Binette, L ; Jimenez-Bailon, E ; Grupe, D ; Liu, Y ; McHardy, I. M ; Minezaki, T ; Yoshii, Y ; Wilkes, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-8f2cf99fb27546e0754e91bf7c18b8557fde84dabf23d9b77b3ccdbdd3ba26063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ABSORPTION</topic><topic>ACCRETION DISKS</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>COSMIC RADIO SOURCES</topic><topic>Earth, ocean, space</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELECTRON DENSITY</topic><topic>ENERGY</topic><topic>EQUILIBRIUM</topic><topic>Exact sciences and technology</topic><topic>GALAXIES</topic><topic>IONIZATION</topic><topic>IONIZING RADIATIONS</topic><topic>KINETIC ENERGY</topic><topic>LUMINOSITY</topic><topic>MASS</topic><topic>MEASURING INSTRUMENTS</topic><topic>OPTICAL PROPERTIES</topic><topic>PHOTOIONIZATION</topic><topic>PHYSICAL PROPERTIES</topic><topic>QUASARS</topic><topic>RADIATIONS</topic><topic>SIMULATION</topic><topic>SOFT X RADIATION</topic><topic>SORPTION</topic><topic>SPECTROMETERS</topic><topic>STARS</topic><topic>X RADIATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krongold, Y</creatorcontrib><creatorcontrib>Elvis, M</creatorcontrib><creatorcontrib>Andrade-Velazquez, M</creatorcontrib><creatorcontrib>Nicastro, F</creatorcontrib><creatorcontrib>Mathur, S</creatorcontrib><creatorcontrib>Reeves, J. N</creatorcontrib><creatorcontrib>Brickhouse, N. S</creatorcontrib><creatorcontrib>Binette, L</creatorcontrib><creatorcontrib>Jimenez-Bailon, E</creatorcontrib><creatorcontrib>Grupe, D</creatorcontrib><creatorcontrib>Liu, Y</creatorcontrib><creatorcontrib>McHardy, I. M</creatorcontrib><creatorcontrib>Minezaki, T</creatorcontrib><creatorcontrib>Yoshii, Y</creatorcontrib><creatorcontrib>Wilkes, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krongold, Y</au><au>Elvis, M</au><au>Andrade-Velazquez, M</au><au>Nicastro, F</au><au>Mathur, S</au><au>Reeves, J. N</au><au>Brickhouse, N. S</au><au>Binette, L</au><au>Jimenez-Bailon, E</au><au>Grupe, D</au><au>Liu, Y</au><au>McHardy, I. M</au><au>Minezaki, T</au><au>Yoshii, Y</au><au>Wilkes, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suzaku Monitoring of the Seyfert 1 Galaxy NGC 5548: Warm Absorber Location and Its Implication for Cosmic Feedback</atitle><jtitle>The Astrophysical journal</jtitle><date>2010-02-10</date><risdate>2010</risdate><volume>710</volume><issue>1</issue><spage>360</spage><epage>371</epage><pages>360-371</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>We present a 2 month Suzaku X-ray monitoring of the Seyfert 1 galaxy NGC 5548. The campaign consists of seven observations (with exposure time of {approx}30 ks each), separated by {approx}1 week. This paper focus on the X-ray Imaging Spectrometer data of NGC 5548. We analyze the response in the opacity of the gas that forms the well-known ionized absorber in this source for ionizing flux variations. Despite variations by a factor of {approx}4 in the impinging continuum, the soft X-ray spectra of the source show little spectral variations, suggesting no response from the ionized absorber. A detailed time modeling of the spectra confirms the lack of opacity variations for an absorbing component with high ionization (U{sub X} {approx} -0.85), and high outflow velocity (v{sub out} {approx} 1040 km s{sup -1}), as the ionization parameter was found to be consistent with a constant value during the whole campaign. Instead, the models suggest that the ionization parameter of a low ionization (U{sub X} {approx} -2.8), low velocity (v{sub out} {approx} 590 km s{sup -1}) absorbing component might be changing linearly with the ionizing flux, as expected for gas in photoionization equilibrium. However, given the lack of spectral variations among observations, we consider the variations in this component as tentative. Using the lack of variations, we set an upper limit of n{sub e} &lt; 2.0 x 10{sup 7} cm{sup -3} for the electron density of the gas forming the high ionization, high velocity component. This implies a large distance from the continuum source (R&gt;0.033 pc; R&gt;5000R{sub S} ). If the variations in the low ionization, low velocity component are real, they imply n{sub e} &gt;9.8 x 10{sup 4} cm{sup -3} and R &lt; 3 pc. We discuss our results in terms of two different scenarios: a large-scale outflow originating in the inner parts of the accretion disk, or a thermally driven wind originating much farther out. Given the large distance of the wind, the implied mass outflow rate is also large; the mass outflow is dominated by the high ionization component). The associated total kinetic energy deployed by the wind in the host galaxy (&gt;1.2 x 10{sup 56} erg) can be enough to disrupt the interstellar medium, possibly quenching or regulating large-scale star formation. However, the total mass and energy ejected by the wind may still be lower than the one required for cosmic feedback, even when extrapolated to quasar luminosities. Such feedback would require that we are observing the wind before it is fully accelerated.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0004-637X/710/1/360</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2010-02, Vol.710 (1), p.360-371
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_849472286
source Institute of Physics Open Access Journal Titles
subjects ABSORPTION
ACCRETION DISKS
Astronomy
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
COSMIC RADIO SOURCES
Earth, ocean, space
ELECTROMAGNETIC RADIATION
ELECTRON DENSITY
ENERGY
EQUILIBRIUM
Exact sciences and technology
GALAXIES
IONIZATION
IONIZING RADIATIONS
KINETIC ENERGY
LUMINOSITY
MASS
MEASURING INSTRUMENTS
OPTICAL PROPERTIES
PHOTOIONIZATION
PHYSICAL PROPERTIES
QUASARS
RADIATIONS
SIMULATION
SOFT X RADIATION
SORPTION
SPECTROMETERS
STARS
X RADIATION
title Suzaku Monitoring of the Seyfert 1 Galaxy NGC 5548: Warm Absorber Location and Its Implication for Cosmic Feedback
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suzaku%20Monitoring%20of%20the%20Seyfert%201%20Galaxy%20NGC%C2%A05548:%20Warm%20Absorber%20Location%20and%20Its%20Implication%20for%20Cosmic%20Feedback&rft.jtitle=The%20Astrophysical%20journal&rft.au=Krongold,%20Y&rft.date=2010-02-10&rft.volume=710&rft.issue=1&rft.spage=360&rft.epage=371&rft.pages=360-371&rft.issn=0004-637X&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1088/0004-637X/710/1/360&rft_dat=%3Cproquest_O3W%3E849472286%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849472286&rft_id=info:pmid/&rfr_iscdi=true