Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)
Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-...
Gespeichert in:
Veröffentlicht in: | Information sciences 2010-12, Vol.180 (24), p.5060-5076 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5076 |
---|---|
container_issue | 24 |
container_start_page | 5060 |
container_title | Information sciences |
container_volume | 180 |
creator | Papadakis, S.E. Kaburlasos, Vassilis G. |
description | Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules. |
doi_str_mv | 10.1016/j.ins.2010.03.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510001350</els_id><sourcerecordid>849471669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAGzegCHpOc5HLSaE-KhUAQPMluNcJFeJE-y00I2NZ-D1eBJcChITk893_9_J_hFyzCBmwPLJIjbWxwmEO_AYEr5DRmxaJFGeCLZLRgAJRJBk2T458H4BAGmR5yPy_mBQ44vxGDXGonJU9b3rXk2rBtNZ2tXUdvZ31nYVNp6WymNFwzQkS1WaxvjBaNU060nfeW_-dqixA7re4RCQ73qlGv_59kHtsi3ReXo6u_Nnh2SvDn08-jnH5On66vHyNprf38wuL-aR5iIbIpFxrAXnSidFpjUWgFXK6gJVWadCAM_StC5BJVCoUBUglMh0VVU1SwOGfExOtnvD05-X6AfZGq-xaZTFbunlNBVpwfJchCTbJrULf3JYy94FK24tGciNc7mQwbncOJfAZXAemPMtEyzhyqCTXhu0GivjUA-y6sw_9BfXhI8L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849471669</pqid></control><display><type>article</type><title>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Papadakis, S.E. ; Kaburlasos, Vassilis G.</creator><creatorcontrib>Papadakis, S.E. ; Kaburlasos, Vassilis G.</creatorcontrib><description>Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.03.023</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Computational efficiency ; Fuzzy ; Fuzzy inference systems (FIS) ; Fuzzy logic ; Fuzzy set theory ; Genetic optimization ; Granular data ; Intervals ; Intervals’ number (IN) ; Lattice theory ; Linear approximation ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Rules ; Self-organizing map (SOM) ; Similarity measure ; Structure identification ; TSK model</subject><ispartof>Information sciences, 2010-12, Vol.180 (24), p.5060-5076</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</citedby><cites>FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2010.03.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Papadakis, S.E.</creatorcontrib><creatorcontrib>Kaburlasos, Vassilis G.</creatorcontrib><title>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</title><title>Information sciences</title><description>Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.</description><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Fuzzy</subject><subject>Fuzzy inference systems (FIS)</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Genetic optimization</subject><subject>Granular data</subject><subject>Intervals</subject><subject>Intervals’ number (IN)</subject><subject>Lattice theory</subject><subject>Linear approximation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Rules</subject><subject>Self-organizing map (SOM)</subject><subject>Similarity measure</subject><subject>Structure identification</subject><subject>TSK model</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAGzegCHpOc5HLSaE-KhUAQPMluNcJFeJE-y00I2NZ-D1eBJcChITk893_9_J_hFyzCBmwPLJIjbWxwmEO_AYEr5DRmxaJFGeCLZLRgAJRJBk2T458H4BAGmR5yPy_mBQ44vxGDXGonJU9b3rXk2rBtNZ2tXUdvZ31nYVNp6WymNFwzQkS1WaxvjBaNU060nfeW_-dqixA7re4RCQ73qlGv_59kHtsi3ReXo6u_Nnh2SvDn08-jnH5On66vHyNprf38wuL-aR5iIbIpFxrAXnSidFpjUWgFXK6gJVWadCAM_StC5BJVCoUBUglMh0VVU1SwOGfExOtnvD05-X6AfZGq-xaZTFbunlNBVpwfJchCTbJrULf3JYy94FK24tGciNc7mQwbncOJfAZXAemPMtEyzhyqCTXhu0GivjUA-y6sw_9BfXhI8L</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Papadakis, S.E.</creator><creator>Kaburlasos, Vassilis G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101215</creationdate><title>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</title><author>Papadakis, S.E. ; Kaburlasos, Vassilis G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Fuzzy</topic><topic>Fuzzy inference systems (FIS)</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Genetic optimization</topic><topic>Granular data</topic><topic>Intervals</topic><topic>Intervals’ number (IN)</topic><topic>Lattice theory</topic><topic>Linear approximation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Rules</topic><topic>Self-organizing map (SOM)</topic><topic>Similarity measure</topic><topic>Structure identification</topic><topic>TSK model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadakis, S.E.</creatorcontrib><creatorcontrib>Kaburlasos, Vassilis G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadakis, S.E.</au><au>Kaburlasos, Vassilis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</atitle><jtitle>Information sciences</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>180</volume><issue>24</issue><spage>5060</spage><epage>5076</epage><pages>5060-5076</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.03.023</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2010-12, Vol.180 (24), p.5060-5076 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_849471669 |
source | Access via ScienceDirect (Elsevier) |
subjects | Approximation Computational efficiency Fuzzy Fuzzy inference systems (FIS) Fuzzy logic Fuzzy set theory Genetic optimization Granular data Intervals Intervals’ number (IN) Lattice theory Linear approximation Mathematical analysis Mathematical models Nonlinearity Rules Self-organizing map (SOM) Similarity measure Structure identification TSK model |
title | Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise-linear%20approximation%20of%20non-linear%20models%20based%20on%20probabilistically/possibilistically%20interpreted%20intervals%E2%80%99%20numbers%20(INs)&rft.jtitle=Information%20sciences&rft.au=Papadakis,%20S.E.&rft.date=2010-12-15&rft.volume=180&rft.issue=24&rft.spage=5060&rft.epage=5076&rft.pages=5060-5076&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.03.023&rft_dat=%3Cproquest_cross%3E849471669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849471669&rft_id=info:pmid/&rft_els_id=S0020025510001350&rfr_iscdi=true |