Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)

Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2010-12, Vol.180 (24), p.5060-5076
Hauptverfasser: Papadakis, S.E., Kaburlasos, Vassilis G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5076
container_issue 24
container_start_page 5060
container_title Information sciences
container_volume 180
creator Papadakis, S.E.
Kaburlasos, Vassilis G.
description Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.
doi_str_mv 10.1016/j.ins.2010.03.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025510001350</els_id><sourcerecordid>849471669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAQxy0EEqXwAGzegCHpOc5HLSaE-KhUAQPMluNcJFeJE-y00I2NZ-D1eBJcChITk893_9_J_hFyzCBmwPLJIjbWxwmEO_AYEr5DRmxaJFGeCLZLRgAJRJBk2T458H4BAGmR5yPy_mBQ44vxGDXGonJU9b3rXk2rBtNZ2tXUdvZ31nYVNp6WymNFwzQkS1WaxvjBaNU060nfeW_-dqixA7re4RCQ73qlGv_59kHtsi3ReXo6u_Nnh2SvDn08-jnH5On66vHyNprf38wuL-aR5iIbIpFxrAXnSidFpjUWgFXK6gJVWadCAM_StC5BJVCoUBUglMh0VVU1SwOGfExOtnvD05-X6AfZGq-xaZTFbunlNBVpwfJchCTbJrULf3JYy94FK24tGciNc7mQwbncOJfAZXAemPMtEyzhyqCTXhu0GivjUA-y6sw_9BfXhI8L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849471669</pqid></control><display><type>article</type><title>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Papadakis, S.E. ; Kaburlasos, Vassilis G.</creator><creatorcontrib>Papadakis, S.E. ; Kaburlasos, Vassilis G.</creatorcontrib><description>Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2010.03.023</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Computational efficiency ; Fuzzy ; Fuzzy inference systems (FIS) ; Fuzzy logic ; Fuzzy set theory ; Genetic optimization ; Granular data ; Intervals ; Intervals’ number (IN) ; Lattice theory ; Linear approximation ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Rules ; Self-organizing map (SOM) ; Similarity measure ; Structure identification ; TSK model</subject><ispartof>Information sciences, 2010-12, Vol.180 (24), p.5060-5076</ispartof><rights>2010 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</citedby><cites>FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ins.2010.03.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Papadakis, S.E.</creatorcontrib><creatorcontrib>Kaburlasos, Vassilis G.</creatorcontrib><title>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</title><title>Information sciences</title><description>Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.</description><subject>Approximation</subject><subject>Computational efficiency</subject><subject>Fuzzy</subject><subject>Fuzzy inference systems (FIS)</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Genetic optimization</subject><subject>Granular data</subject><subject>Intervals</subject><subject>Intervals’ number (IN)</subject><subject>Lattice theory</subject><subject>Linear approximation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Rules</subject><subject>Self-organizing map (SOM)</subject><subject>Similarity measure</subject><subject>Structure identification</subject><subject>TSK model</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAQxy0EEqXwAGzegCHpOc5HLSaE-KhUAQPMluNcJFeJE-y00I2NZ-D1eBJcChITk893_9_J_hFyzCBmwPLJIjbWxwmEO_AYEr5DRmxaJFGeCLZLRgAJRJBk2T458H4BAGmR5yPy_mBQ44vxGDXGonJU9b3rXk2rBtNZ2tXUdvZ31nYVNp6WymNFwzQkS1WaxvjBaNU060nfeW_-dqixA7re4RCQ73qlGv_59kHtsi3ReXo6u_Nnh2SvDn08-jnH5On66vHyNprf38wuL-aR5iIbIpFxrAXnSidFpjUWgFXK6gJVWadCAM_StC5BJVCoUBUglMh0VVU1SwOGfExOtnvD05-X6AfZGq-xaZTFbunlNBVpwfJchCTbJrULf3JYy94FK24tGciNc7mQwbncOJfAZXAemPMtEyzhyqCTXhu0GivjUA-y6sw_9BfXhI8L</recordid><startdate>20101215</startdate><enddate>20101215</enddate><creator>Papadakis, S.E.</creator><creator>Kaburlasos, Vassilis G.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101215</creationdate><title>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</title><author>Papadakis, S.E. ; Kaburlasos, Vassilis G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-953ef933ac275cce70ed41f7eabf49903544fb0a207a44f709a95cdddf14933e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Approximation</topic><topic>Computational efficiency</topic><topic>Fuzzy</topic><topic>Fuzzy inference systems (FIS)</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Genetic optimization</topic><topic>Granular data</topic><topic>Intervals</topic><topic>Intervals’ number (IN)</topic><topic>Lattice theory</topic><topic>Linear approximation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Rules</topic><topic>Self-organizing map (SOM)</topic><topic>Similarity measure</topic><topic>Structure identification</topic><topic>TSK model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papadakis, S.E.</creatorcontrib><creatorcontrib>Kaburlasos, Vassilis G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papadakis, S.E.</au><au>Kaburlasos, Vassilis G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)</atitle><jtitle>Information sciences</jtitle><date>2010-12-15</date><risdate>2010</risdate><volume>180</volume><issue>24</issue><spage>5060</spage><epage>5076</epage><pages>5060-5076</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>Linear models are preferable due to simplicity. Nevertheless, non-linear models often emerge in practice. A popular approach for modeling nonlinearities is by piecewise-linear approximation. Inspired from fuzzy inference systems (FISs) of Tagaki–Sugeno–Kang (TSK) type as well as from Kohonen’s self-organizing map (KSOM) this work introduces a genetically optimized synergy based on intervals’ numbers, or INs for short. The latter (INs) are interpreted here either probabilistically or possibilistically. The employment of mathematical lattice theory is instrumental. Advantages include accommodation of granular data, introduction of tunable nonlinearities, and induction of descriptive decision-making knowledge (rules) from the data. Both efficiency and effectiveness are demonstrated in three benchmark problems. The proposed computational method demonstrates invariably a better capacity for generalization; moreover, it learns orders-of-magnitude faster than alternative methods inducing clearly fewer rules.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2010.03.023</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2010-12, Vol.180 (24), p.5060-5076
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_849471669
source Access via ScienceDirect (Elsevier)
subjects Approximation
Computational efficiency
Fuzzy
Fuzzy inference systems (FIS)
Fuzzy logic
Fuzzy set theory
Genetic optimization
Granular data
Intervals
Intervals’ number (IN)
Lattice theory
Linear approximation
Mathematical analysis
Mathematical models
Nonlinearity
Rules
Self-organizing map (SOM)
Similarity measure
Structure identification
TSK model
title Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals’ numbers (INs)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise-linear%20approximation%20of%20non-linear%20models%20based%20on%20probabilistically/possibilistically%20interpreted%20intervals%E2%80%99%20numbers%20(INs)&rft.jtitle=Information%20sciences&rft.au=Papadakis,%20S.E.&rft.date=2010-12-15&rft.volume=180&rft.issue=24&rft.spage=5060&rft.epage=5076&rft.pages=5060-5076&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2010.03.023&rft_dat=%3Cproquest_cross%3E849471669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849471669&rft_id=info:pmid/&rft_els_id=S0020025510001350&rfr_iscdi=true