A class of bivariate negative binomial distributions with different index parameters in the marginals

In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-12, Vol.217 (7), p.3069-3087
Hauptverfasser: Ng, Choung Min, Ong, Seng-Huat, Srivastava, H.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3087
container_issue 7
container_start_page 3069
container_title Applied mathematics and computation
container_volume 217
creator Ng, Choung Min
Ong, Seng-Huat
Srivastava, H.M.
description In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.
doi_str_mv 10.1016/j.amc.2010.08.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310008945</els_id><sourcerecordid>849471535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</originalsourceid><addsrcrecordid>eNp9UMFu1DAQtRBILIUP4OYL4pRlHDuJI05VRQGpEhc4W85k3M4qcRbbu8Df42orjpye5um9NzNPiLcK9gpU_-Gw9yvuW6gz2D0YeCZ2yg666XozPhc7gLFvNIB-KV7lfACAoVdmJ-ha4uJzlluQE599Yl9IRrr3hc9Uqbit7Bc5cy6Jp1PhLWb5i8tDpUKgRLFIjjP9lkef_EqFUq6ELA8kV5_uOfolvxYvQgV684RX4sftp-83X5q7b5-_3lzfNai7sTTd1Fo1adRe9Uh6wqG1hMrPSmnVTwZUwDDDPKIxZvDdiD2MJmhrtQoBrb4S7y-5x7T9PFEubuWMtCw-0nbKzprRDKrTXVWqixLTlnOi4I6J671_nAL32Kg7uNqoe2zUgXW10ep595TuM_olJB-R8z9jq63uetVW3ceLjuqrZ6bkMjJFpJkTYXHzxv_Z8he0D4y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849471535</pqid></control><display><type>article</type><title>A class of bivariate negative binomial distributions with different index parameters in the marginals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ng, Choung Min ; Ong, Seng-Huat ; Srivastava, H.M.</creator><creatorcontrib>Ng, Choung Min ; Ong, Seng-Huat ; Srivastava, H.M.</creatorcontrib><description>In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.08.040</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Binomials ; Canonical expansions and quadrant dependence ; Computer generation of bivariate samples ; Computer simulation ; Correlation analysis ; Exact sciences and technology ; Extension of trivariate reduction ; Mathematical analysis ; Mathematical models ; Mathematics ; Meixner class of polynomials and Srivastava’s triple hypergeometric series ; Mixed Poisson distribution ; Multivariate extensions and goodness-of-fit ; Numerical analysis ; Numerical analysis. Scientific computation ; Quadrants ; Samples ; Sciences and techniques of general use ; Special functions ; Statistical analysis ; Statistical modelling</subject><ispartof>Applied mathematics and computation, 2010-12, Vol.217 (7), p.3069-3087</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</citedby><cites>FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.08.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23835612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Choung Min</creatorcontrib><creatorcontrib>Ong, Seng-Huat</creatorcontrib><creatorcontrib>Srivastava, H.M.</creatorcontrib><title>A class of bivariate negative binomial distributions with different index parameters in the marginals</title><title>Applied mathematics and computation</title><description>In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.</description><subject>Binomials</subject><subject>Canonical expansions and quadrant dependence</subject><subject>Computer generation of bivariate samples</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Exact sciences and technology</subject><subject>Extension of trivariate reduction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Meixner class of polynomials and Srivastava’s triple hypergeometric series</subject><subject>Mixed Poisson distribution</subject><subject>Multivariate extensions and goodness-of-fit</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Quadrants</subject><subject>Samples</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Statistical analysis</subject><subject>Statistical modelling</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMFu1DAQtRBILIUP4OYL4pRlHDuJI05VRQGpEhc4W85k3M4qcRbbu8Df42orjpye5um9NzNPiLcK9gpU_-Gw9yvuW6gz2D0YeCZ2yg666XozPhc7gLFvNIB-KV7lfACAoVdmJ-ha4uJzlluQE599Yl9IRrr3hc9Uqbit7Bc5cy6Jp1PhLWb5i8tDpUKgRLFIjjP9lkef_EqFUq6ELA8kV5_uOfolvxYvQgV684RX4sftp-83X5q7b5-_3lzfNai7sTTd1Fo1adRe9Uh6wqG1hMrPSmnVTwZUwDDDPKIxZvDdiD2MJmhrtQoBrb4S7y-5x7T9PFEubuWMtCw-0nbKzprRDKrTXVWqixLTlnOi4I6J671_nAL32Kg7uNqoe2zUgXW10ep595TuM_olJB-R8z9jq63uetVW3ceLjuqrZ6bkMjJFpJkTYXHzxv_Z8he0D4y-</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Ng, Choung Min</creator><creator>Ong, Seng-Huat</creator><creator>Srivastava, H.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>A class of bivariate negative binomial distributions with different index parameters in the marginals</title><author>Ng, Choung Min ; Ong, Seng-Huat ; Srivastava, H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binomials</topic><topic>Canonical expansions and quadrant dependence</topic><topic>Computer generation of bivariate samples</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Exact sciences and technology</topic><topic>Extension of trivariate reduction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Meixner class of polynomials and Srivastava’s triple hypergeometric series</topic><topic>Mixed Poisson distribution</topic><topic>Multivariate extensions and goodness-of-fit</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Quadrants</topic><topic>Samples</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Statistical analysis</topic><topic>Statistical modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Choung Min</creatorcontrib><creatorcontrib>Ong, Seng-Huat</creatorcontrib><creatorcontrib>Srivastava, H.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Choung Min</au><au>Ong, Seng-Huat</au><au>Srivastava, H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of bivariate negative binomial distributions with different index parameters in the marginals</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>217</volume><issue>7</issue><spage>3069</spage><epage>3087</epage><pages>3069-3087</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.08.040</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-12, Vol.217 (7), p.3069-3087
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_849471535
source Access via ScienceDirect (Elsevier)
subjects Binomials
Canonical expansions and quadrant dependence
Computer generation of bivariate samples
Computer simulation
Correlation analysis
Exact sciences and technology
Extension of trivariate reduction
Mathematical analysis
Mathematical models
Mathematics
Meixner class of polynomials and Srivastava’s triple hypergeometric series
Mixed Poisson distribution
Multivariate extensions and goodness-of-fit
Numerical analysis
Numerical analysis. Scientific computation
Quadrants
Samples
Sciences and techniques of general use
Special functions
Statistical analysis
Statistical modelling
title A class of bivariate negative binomial distributions with different index parameters in the marginals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20bivariate%20negative%20binomial%20distributions%20with%20different%20index%20parameters%20in%20the%20marginals&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Ng,%20Choung%20Min&rft.date=2010-12-01&rft.volume=217&rft.issue=7&rft.spage=3069&rft.epage=3087&rft.pages=3069-3087&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.08.040&rft_dat=%3Cproquest_cross%3E849471535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849471535&rft_id=info:pmid/&rft_els_id=S0096300310008945&rfr_iscdi=true