A class of bivariate negative binomial distributions with different index parameters in the marginals
In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required....
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2010-12, Vol.217 (7), p.3069-3087 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3087 |
---|---|
container_issue | 7 |
container_start_page | 3069 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Ng, Choung Min Ong, Seng-Huat Srivastava, H.M. |
description | In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions. |
doi_str_mv | 10.1016/j.amc.2010.08.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310008945</els_id><sourcerecordid>849471535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</originalsourceid><addsrcrecordid>eNp9UMFu1DAQtRBILIUP4OYL4pRlHDuJI05VRQGpEhc4W85k3M4qcRbbu8Df42orjpye5um9NzNPiLcK9gpU_-Gw9yvuW6gz2D0YeCZ2yg666XozPhc7gLFvNIB-KV7lfACAoVdmJ-ha4uJzlluQE599Yl9IRrr3hc9Uqbit7Bc5cy6Jp1PhLWb5i8tDpUKgRLFIjjP9lkef_EqFUq6ELA8kV5_uOfolvxYvQgV684RX4sftp-83X5q7b5-_3lzfNai7sTTd1Fo1adRe9Uh6wqG1hMrPSmnVTwZUwDDDPKIxZvDdiD2MJmhrtQoBrb4S7y-5x7T9PFEubuWMtCw-0nbKzprRDKrTXVWqixLTlnOi4I6J671_nAL32Kg7uNqoe2zUgXW10ep595TuM_olJB-R8z9jq63uetVW3ceLjuqrZ6bkMjJFpJkTYXHzxv_Z8he0D4y-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849471535</pqid></control><display><type>article</type><title>A class of bivariate negative binomial distributions with different index parameters in the marginals</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ng, Choung Min ; Ong, Seng-Huat ; Srivastava, H.M.</creator><creatorcontrib>Ng, Choung Min ; Ong, Seng-Huat ; Srivastava, H.M.</creatorcontrib><description>In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.08.040</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Binomials ; Canonical expansions and quadrant dependence ; Computer generation of bivariate samples ; Computer simulation ; Correlation analysis ; Exact sciences and technology ; Extension of trivariate reduction ; Mathematical analysis ; Mathematical models ; Mathematics ; Meixner class of polynomials and Srivastava’s triple hypergeometric series ; Mixed Poisson distribution ; Multivariate extensions and goodness-of-fit ; Numerical analysis ; Numerical analysis. Scientific computation ; Quadrants ; Samples ; Sciences and techniques of general use ; Special functions ; Statistical analysis ; Statistical modelling</subject><ispartof>Applied mathematics and computation, 2010-12, Vol.217 (7), p.3069-3087</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</citedby><cites>FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.08.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23835612$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Choung Min</creatorcontrib><creatorcontrib>Ong, Seng-Huat</creatorcontrib><creatorcontrib>Srivastava, H.M.</creatorcontrib><title>A class of bivariate negative binomial distributions with different index parameters in the marginals</title><title>Applied mathematics and computation</title><description>In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.</description><subject>Binomials</subject><subject>Canonical expansions and quadrant dependence</subject><subject>Computer generation of bivariate samples</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Exact sciences and technology</subject><subject>Extension of trivariate reduction</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Meixner class of polynomials and Srivastava’s triple hypergeometric series</subject><subject>Mixed Poisson distribution</subject><subject>Multivariate extensions and goodness-of-fit</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Quadrants</subject><subject>Samples</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Statistical analysis</subject><subject>Statistical modelling</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UMFu1DAQtRBILIUP4OYL4pRlHDuJI05VRQGpEhc4W85k3M4qcRbbu8Df42orjpye5um9NzNPiLcK9gpU_-Gw9yvuW6gz2D0YeCZ2yg666XozPhc7gLFvNIB-KV7lfACAoVdmJ-ha4uJzlluQE599Yl9IRrr3hc9Uqbit7Bc5cy6Jp1PhLWb5i8tDpUKgRLFIjjP9lkef_EqFUq6ELA8kV5_uOfolvxYvQgV684RX4sftp-83X5q7b5-_3lzfNai7sTTd1Fo1adRe9Uh6wqG1hMrPSmnVTwZUwDDDPKIxZvDdiD2MJmhrtQoBrb4S7y-5x7T9PFEubuWMtCw-0nbKzprRDKrTXVWqixLTlnOi4I6J671_nAL32Kg7uNqoe2zUgXW10ep595TuM_olJB-R8z9jq63uetVW3ceLjuqrZ6bkMjJFpJkTYXHzxv_Z8he0D4y-</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Ng, Choung Min</creator><creator>Ong, Seng-Huat</creator><creator>Srivastava, H.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>A class of bivariate negative binomial distributions with different index parameters in the marginals</title><author>Ng, Choung Min ; Ong, Seng-Huat ; Srivastava, H.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-5b281b3c3a16ce3bc728ec1ad11316b401fcfd0d9c4447a59c6094f38831ffc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Binomials</topic><topic>Canonical expansions and quadrant dependence</topic><topic>Computer generation of bivariate samples</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Exact sciences and technology</topic><topic>Extension of trivariate reduction</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Meixner class of polynomials and Srivastava’s triple hypergeometric series</topic><topic>Mixed Poisson distribution</topic><topic>Multivariate extensions and goodness-of-fit</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Quadrants</topic><topic>Samples</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Statistical analysis</topic><topic>Statistical modelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Choung Min</creatorcontrib><creatorcontrib>Ong, Seng-Huat</creatorcontrib><creatorcontrib>Srivastava, H.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Choung Min</au><au>Ong, Seng-Huat</au><au>Srivastava, H.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of bivariate negative binomial distributions with different index parameters in the marginals</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>217</volume><issue>7</issue><spage>3069</spage><epage>3087</epage><pages>3069-3087</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, we consider a new class of bivariate negative binomial distributions having marginal distributions with different index parameters. This feature is useful in statistical modelling and simulation studies, where different marginal distributions and a specified correlation are required. This feature also makes it more flexible than the existing bivariate generalizations of the negative binomial distribution, which have a common index parameter in the marginal distributions. Various interesting properties, such as canonical expansions and quadrant dependence, are obtained. Potential application of the proposed class of bivariate negative binomial distributions, as a bivariate mixed Poisson distribution, and computer generation of samples are examined. Numerical examples as well as goodness-of-fit to simulated and real data are also given here in order to illustrate the application of this family of bivariate negative binomial distributions.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.08.040</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-12, Vol.217 (7), p.3069-3087 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_849471535 |
source | Access via ScienceDirect (Elsevier) |
subjects | Binomials Canonical expansions and quadrant dependence Computer generation of bivariate samples Computer simulation Correlation analysis Exact sciences and technology Extension of trivariate reduction Mathematical analysis Mathematical models Mathematics Meixner class of polynomials and Srivastava’s triple hypergeometric series Mixed Poisson distribution Multivariate extensions and goodness-of-fit Numerical analysis Numerical analysis. Scientific computation Quadrants Samples Sciences and techniques of general use Special functions Statistical analysis Statistical modelling |
title | A class of bivariate negative binomial distributions with different index parameters in the marginals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20bivariate%20negative%20binomial%20distributions%20with%20different%20index%20parameters%20in%20the%20marginals&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Ng,%20Choung%20Min&rft.date=2010-12-01&rft.volume=217&rft.issue=7&rft.spage=3069&rft.epage=3087&rft.pages=3069-3087&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.08.040&rft_dat=%3Cproquest_cross%3E849471535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849471535&rft_id=info:pmid/&rft_els_id=S0096300310008945&rfr_iscdi=true |