Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation

The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard nu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2011-02, Vol.230 (3), p.818-834
Hauptverfasser: Froese, B.D., Oberman, A.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 834
container_issue 3
container_start_page 818
container_title Journal of computational physics
container_volume 230
creator Froese, B.D.
Oberman, A.M.
description The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method. Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.
doi_str_mv 10.1016/j.jcp.2010.10.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110005760</els_id><sourcerecordid>849471360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</originalsourceid><addsrcrecordid>eNp9kM1O3DAQgK2qSN1CH6A3X6pyyXbGyTqxekIIKBIVF7hieZ0x9SobBztB4sY78BJ9j74JT1KHRRw5jWbmmx99jH1FWCKg_LFZbuywFPCSL0HAB7ZAUFCIGuVHtgAQWCil8BP7nNIGAJpV1SzYzalJI3e-9yPx1jtHkXpLPIXunmLiLkSefH87dSbOxWn0oU88OD7-IU5d54fRW_479Lf0_Ph0tB3-_Y25cTeZmTxge850ib68xn12fXpydfyruLg8Oz8-uihsqcRYVKqRLbi1ELV1K4nCWIlGmMY21EpooVqtayEEKYfUgFmXDaK061aRUsLZcp993-0dYribKI1665PN75mewpR0U6mqxlJCJg_fJVHWWNVVvSozijvUxpBSJKeH6LcmPmgEPVvXG52t69n6XMrW88y31_UmWdO5aHrr09ugKGWJqKrM_dxxlK3ce4o6WT-bb30kO-o2-Heu_AcJgJl5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671474753</pqid></control><display><type>article</type><title>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Froese, B.D. ; Oberman, A.M.</creator><creatorcontrib>Froese, B.D. ; Oberman, A.M.</creatorcontrib><description>The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method. Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.10.020</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational techniques ; Construction ; Convexity constraints ; Discretization ; Exact sciences and technology ; Fully nonlinear elliptic Partial Differential Equations ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Monge-Ampere equation ; Monge–Ampère equations ; Monotone schemes ; Nonlinear dynamics ; Nonlinear finite difference methods ; Physics ; Solvers ; Viscosity solutions</subject><ispartof>Journal of computational physics, 2011-02, Vol.230 (3), p.818-834</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</citedby><cites>FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2010.10.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23631194$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Froese, B.D.</creatorcontrib><creatorcontrib>Oberman, A.M.</creatorcontrib><title>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</title><title>Journal of computational physics</title><description>The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method. Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.</description><subject>Computation</subject><subject>Computational techniques</subject><subject>Construction</subject><subject>Convexity constraints</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Fully nonlinear elliptic Partial Differential Equations</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Monge-Ampere equation</subject><subject>Monge–Ampère equations</subject><subject>Monotone schemes</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear finite difference methods</subject><subject>Physics</subject><subject>Solvers</subject><subject>Viscosity solutions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAQgK2qSN1CH6A3X6pyyXbGyTqxekIIKBIVF7hieZ0x9SobBztB4sY78BJ9j74JT1KHRRw5jWbmmx99jH1FWCKg_LFZbuywFPCSL0HAB7ZAUFCIGuVHtgAQWCil8BP7nNIGAJpV1SzYzalJI3e-9yPx1jtHkXpLPIXunmLiLkSefH87dSbOxWn0oU88OD7-IU5d54fRW_479Lf0_Ph0tB3-_Y25cTeZmTxge850ib68xn12fXpydfyruLg8Oz8-uihsqcRYVKqRLbi1ELV1K4nCWIlGmMY21EpooVqtayEEKYfUgFmXDaK061aRUsLZcp993-0dYribKI1665PN75mewpR0U6mqxlJCJg_fJVHWWNVVvSozijvUxpBSJKeH6LcmPmgEPVvXG52t69n6XMrW88y31_UmWdO5aHrr09ugKGWJqKrM_dxxlK3ce4o6WT-bb30kO-o2-Heu_AcJgJl5</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Froese, B.D.</creator><creator>Oberman, A.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110201</creationdate><title>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</title><author>Froese, B.D. ; Oberman, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computation</topic><topic>Computational techniques</topic><topic>Construction</topic><topic>Convexity constraints</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Fully nonlinear elliptic Partial Differential Equations</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Monge-Ampere equation</topic><topic>Monge–Ampère equations</topic><topic>Monotone schemes</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear finite difference methods</topic><topic>Physics</topic><topic>Solvers</topic><topic>Viscosity solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froese, B.D.</creatorcontrib><creatorcontrib>Oberman, A.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froese, B.D.</au><au>Oberman, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</atitle><jtitle>Journal of computational physics</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>230</volume><issue>3</issue><spage>818</spage><epage>834</epage><pages>818-834</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail. In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method. Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.10.020</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2011-02, Vol.230 (3), p.818-834
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_849471360
source Elsevier ScienceDirect Journals Complete
subjects Computation
Computational techniques
Construction
Convexity constraints
Discretization
Exact sciences and technology
Fully nonlinear elliptic Partial Differential Equations
Mathematical analysis
Mathematical methods in physics
Mathematical models
Monge-Ampere equation
Monge–Ampère equations
Monotone schemes
Nonlinear dynamics
Nonlinear finite difference methods
Physics
Solvers
Viscosity solutions
title Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20finite%20difference%20solvers%20for%20singular%20solutions%20of%20the%20elliptic%20Monge%E2%80%93Amp%C3%A8re%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Froese,%20B.D.&rft.date=2011-02-01&rft.volume=230&rft.issue=3&rft.spage=818&rft.epage=834&rft.pages=818-834&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.10.020&rft_dat=%3Cproquest_cross%3E849471360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671474753&rft_id=info:pmid/&rft_els_id=S0021999110005760&rfr_iscdi=true