Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation
The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard nu...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2011-02, Vol.230 (3), p.818-834 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 834 |
---|---|
container_issue | 3 |
container_start_page | 818 |
container_title | Journal of computational physics |
container_volume | 230 |
creator | Froese, B.D. Oberman, A.M. |
description | The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail.
In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select
a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method.
Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities. |
doi_str_mv | 10.1016/j.jcp.2010.10.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849471360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999110005760</els_id><sourcerecordid>849471360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</originalsourceid><addsrcrecordid>eNp9kM1O3DAQgK2qSN1CH6A3X6pyyXbGyTqxekIIKBIVF7hieZ0x9SobBztB4sY78BJ9j74JT1KHRRw5jWbmmx99jH1FWCKg_LFZbuywFPCSL0HAB7ZAUFCIGuVHtgAQWCil8BP7nNIGAJpV1SzYzalJI3e-9yPx1jtHkXpLPIXunmLiLkSefH87dSbOxWn0oU88OD7-IU5d54fRW_479Lf0_Ph0tB3-_Y25cTeZmTxge850ib68xn12fXpydfyruLg8Oz8-uihsqcRYVKqRLbi1ELV1K4nCWIlGmMY21EpooVqtayEEKYfUgFmXDaK061aRUsLZcp993-0dYribKI1665PN75mewpR0U6mqxlJCJg_fJVHWWNVVvSozijvUxpBSJKeH6LcmPmgEPVvXG52t69n6XMrW88y31_UmWdO5aHrr09ugKGWJqKrM_dxxlK3ce4o6WT-bb30kO-o2-Heu_AcJgJl5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671474753</pqid></control><display><type>article</type><title>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Froese, B.D. ; Oberman, A.M.</creator><creatorcontrib>Froese, B.D. ; Oberman, A.M.</creatorcontrib><description>The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail.
In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select
a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method.
Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2010.10.020</identifier><identifier>CODEN: JCTPAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Inc</publisher><subject>Computation ; Computational techniques ; Construction ; Convexity constraints ; Discretization ; Exact sciences and technology ; Fully nonlinear elliptic Partial Differential Equations ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Monge-Ampere equation ; Monge–Ampère equations ; Monotone schemes ; Nonlinear dynamics ; Nonlinear finite difference methods ; Physics ; Solvers ; Viscosity solutions</subject><ispartof>Journal of computational physics, 2011-02, Vol.230 (3), p.818-834</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</citedby><cites>FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2010.10.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23631194$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Froese, B.D.</creatorcontrib><creatorcontrib>Oberman, A.M.</creatorcontrib><title>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</title><title>Journal of computational physics</title><description>The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail.
In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select
a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method.
Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.</description><subject>Computation</subject><subject>Computational techniques</subject><subject>Construction</subject><subject>Convexity constraints</subject><subject>Discretization</subject><subject>Exact sciences and technology</subject><subject>Fully nonlinear elliptic Partial Differential Equations</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Monge-Ampere equation</subject><subject>Monge–Ampère equations</subject><subject>Monotone schemes</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear finite difference methods</subject><subject>Physics</subject><subject>Solvers</subject><subject>Viscosity solutions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAQgK2qSN1CH6A3X6pyyXbGyTqxekIIKBIVF7hieZ0x9SobBztB4sY78BJ9j74JT1KHRRw5jWbmmx99jH1FWCKg_LFZbuywFPCSL0HAB7ZAUFCIGuVHtgAQWCil8BP7nNIGAJpV1SzYzalJI3e-9yPx1jtHkXpLPIXunmLiLkSefH87dSbOxWn0oU88OD7-IU5d54fRW_479Lf0_Ph0tB3-_Y25cTeZmTxge850ib68xn12fXpydfyruLg8Oz8-uihsqcRYVKqRLbi1ELV1K4nCWIlGmMY21EpooVqtayEEKYfUgFmXDaK061aRUsLZcp993-0dYribKI1665PN75mewpR0U6mqxlJCJg_fJVHWWNVVvSozijvUxpBSJKeH6LcmPmgEPVvXG52t69n6XMrW88y31_UmWdO5aHrr09ugKGWJqKrM_dxxlK3ce4o6WT-bb30kO-o2-Heu_AcJgJl5</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Froese, B.D.</creator><creator>Oberman, A.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20110201</creationdate><title>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</title><author>Froese, B.D. ; Oberman, A.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4986d0fb227cf5612ac61a2a8c8ed60d045b7222e9f1e80ab38116cbd9e992fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computation</topic><topic>Computational techniques</topic><topic>Construction</topic><topic>Convexity constraints</topic><topic>Discretization</topic><topic>Exact sciences and technology</topic><topic>Fully nonlinear elliptic Partial Differential Equations</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Monge-Ampere equation</topic><topic>Monge–Ampère equations</topic><topic>Monotone schemes</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear finite difference methods</topic><topic>Physics</topic><topic>Solvers</topic><topic>Viscosity solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Froese, B.D.</creatorcontrib><creatorcontrib>Oberman, A.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Froese, B.D.</au><au>Oberman, A.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation</atitle><jtitle>Journal of computational physics</jtitle><date>2011-02-01</date><risdate>2011</risdate><volume>230</volume><issue>3</issue><spage>818</spage><epage>834</epage><pages>818-834</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><coden>JCTPAH</coden><abstract>The elliptic Monge–Ampère equation is a fully nonlinear Partial Differential Equation which originated in geometric surface theory, and has been applied in dynamic meteorology, elasticity, geometric optics, image processing and image registration. Solutions can be singular, in which case standard numerical approaches fail.
In this article we build a finite difference solver for the Monge–Ampère equation, which converges even for singular solutions. Regularity results are used to select
a priori between a stable, provably convergent monotone discretization and an accurate finite difference discretization in different regions of the computational domain. This allows singular solutions to be computed using a stable method, and regular solutions to be computed more accurately. The resulting nonlinear equations are then solved by Newton’s method.
Computational results in two and three-dimensions validate the claims of accuracy and solution speed. A computational example is presented which demonstrates the necessity of the use of the monotone scheme near singularities.</abstract><cop>Kidlington</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2010.10.020</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2011-02, Vol.230 (3), p.818-834 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_849471360 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Computation Computational techniques Construction Convexity constraints Discretization Exact sciences and technology Fully nonlinear elliptic Partial Differential Equations Mathematical analysis Mathematical methods in physics Mathematical models Monge-Ampere equation Monge–Ampère equations Monotone schemes Nonlinear dynamics Nonlinear finite difference methods Physics Solvers Viscosity solutions |
title | Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20finite%20difference%20solvers%20for%20singular%20solutions%20of%20the%20elliptic%20Monge%E2%80%93Amp%C3%A8re%20equation&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Froese,%20B.D.&rft.date=2011-02-01&rft.volume=230&rft.issue=3&rft.spage=818&rft.epage=834&rft.pages=818-834&rft.issn=0021-9991&rft.eissn=1090-2716&rft.coden=JCTPAH&rft_id=info:doi/10.1016/j.jcp.2010.10.020&rft_dat=%3Cproquest_cross%3E849471360%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671474753&rft_id=info:pmid/&rft_els_id=S0021999110005760&rfr_iscdi=true |