Random matrix difference models arising in long-term medical drug strategies

This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-11, Vol.217 (5), p.2149-2161
Hauptverfasser: Calbo, G., Cortés, J.-C., Jódar, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2161
container_issue 5
container_start_page 2149
container_title Applied mathematics and computation
container_volume 217
creator Calbo, G.
Cortés, J.-C.
Jódar, L.
description This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.
doi_str_mv 10.1016/j.amc.2010.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849470301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310007599</els_id><sourcerecordid>849470301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-5iKfWmU2bNngS8QsWBNFzCMmkZOnHmnRF_70tu3j0NAw87zvMw9glQo6A8maTm87mK5h2qHLA4ogtsK5EVspCHbMFgJKZABCn7CylDQBUEosFW7-Z3g0d78wYwzd3wXuK1Fvi3eCoTdzEkELf8NDzduibbKQ40eSCNS13cdfwNEYzUhMonbMTb9pEF4e5ZB-PD-_3z9n69enl_m6dWVGqMfOSpKgrYxGx9GiUtJZQGYXSldKrglbCKaqlVUYCoEGllK88lOhrKVAs2fW-dxuHzx2lUXchWWpb09OwS7ouVFGBgJnEPWnjkFIkr7cxdCb-aAQ9i9MbPYnTszgNlZ7ETZmrQ7tJ05M-mt6G9BdciVqUlRATd7vnJk30FSjqZMOszoVIdtRuCP9c-QVgDIJ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849470301</pqid></control><display><type>article</type><title>Random matrix difference models arising in long-term medical drug strategies</title><source>Elsevier ScienceDirect Journals</source><creator>Calbo, G. ; Cortés, J.-C. ; Jódar, L.</creator><creatorcontrib>Calbo, G. ; Cortés, J.-C. ; Jódar, L.</creatorcontrib><description>This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.07.014</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Compartmental random models ; Difference and functional equations, recurrence relations ; Drugs ; Exact sciences and technology ; Finite differences and functional equations ; Initial conditions ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Mean square stability ; Mean square values ; Medical ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Stochastic processes ; Strategy ; Vector random difference equation</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (5), p.2149-2161</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</citedby><cites>FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23835733$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calbo, G.</creatorcontrib><creatorcontrib>Cortés, J.-C.</creatorcontrib><creatorcontrib>Jódar, L.</creatorcontrib><title>Random matrix difference models arising in long-term medical drug strategies</title><title>Applied mathematics and computation</title><description>This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.</description><subject>Algebra</subject><subject>Compartmental random models</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Drugs</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Initial conditions</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mean square stability</subject><subject>Mean square values</subject><subject>Medical</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Strategy</subject><subject>Vector random difference equation</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-5iKfWmU2bNngS8QsWBNFzCMmkZOnHmnRF_70tu3j0NAw87zvMw9glQo6A8maTm87mK5h2qHLA4ogtsK5EVspCHbMFgJKZABCn7CylDQBUEosFW7-Z3g0d78wYwzd3wXuK1Fvi3eCoTdzEkELf8NDzduibbKQ40eSCNS13cdfwNEYzUhMonbMTb9pEF4e5ZB-PD-_3z9n69enl_m6dWVGqMfOSpKgrYxGx9GiUtJZQGYXSldKrglbCKaqlVUYCoEGllK88lOhrKVAs2fW-dxuHzx2lUXchWWpb09OwS7ouVFGBgJnEPWnjkFIkr7cxdCb-aAQ9i9MbPYnTszgNlZ7ETZmrQ7tJ05M-mt6G9BdciVqUlRATd7vnJk30FSjqZMOszoVIdtRuCP9c-QVgDIJ6</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Calbo, G.</creator><creator>Cortés, J.-C.</creator><creator>Jódar, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Random matrix difference models arising in long-term medical drug strategies</title><author>Calbo, G. ; Cortés, J.-C. ; Jódar, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Compartmental random models</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Drugs</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Initial conditions</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mean square stability</topic><topic>Mean square values</topic><topic>Medical</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Strategy</topic><topic>Vector random difference equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calbo, G.</creatorcontrib><creatorcontrib>Cortés, J.-C.</creatorcontrib><creatorcontrib>Jódar, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calbo, G.</au><au>Cortés, J.-C.</au><au>Jódar, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random matrix difference models arising in long-term medical drug strategies</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>217</volume><issue>5</issue><spage>2149</spage><epage>2161</epage><pages>2149-2161</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.07.014</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-11, Vol.217 (5), p.2149-2161
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_849470301
source Elsevier ScienceDirect Journals
subjects Algebra
Compartmental random models
Difference and functional equations, recurrence relations
Drugs
Exact sciences and technology
Finite differences and functional equations
Initial conditions
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematical models
Mathematics
Mean square stability
Mean square values
Medical
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Stochastic processes
Strategy
Vector random difference equation
title Random matrix difference models arising in long-term medical drug strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20matrix%20difference%20models%20arising%20in%20long-term%20medical%20drug%20strategies&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Calbo,%20G.&rft.date=2010-11-01&rft.volume=217&rft.issue=5&rft.spage=2149&rft.epage=2161&rft.pages=2149-2161&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.07.014&rft_dat=%3Cproquest_cross%3E849470301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849470301&rft_id=info:pmid/&rft_els_id=S0096300310007599&rfr_iscdi=true