Random matrix difference models arising in long-term medical drug strategies
This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the m...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2010-11, Vol.217 (5), p.2149-2161 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2161 |
---|---|
container_issue | 5 |
container_start_page | 2149 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Calbo, G. Cortés, J.-C. Jódar, L. |
description | This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown. |
doi_str_mv | 10.1016/j.amc.2010.07.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849470301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310007599</els_id><sourcerecordid>849470301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-5iKfWmU2bNngS8QsWBNFzCMmkZOnHmnRF_70tu3j0NAw87zvMw9glQo6A8maTm87mK5h2qHLA4ogtsK5EVspCHbMFgJKZABCn7CylDQBUEosFW7-Z3g0d78wYwzd3wXuK1Fvi3eCoTdzEkELf8NDzduibbKQ40eSCNS13cdfwNEYzUhMonbMTb9pEF4e5ZB-PD-_3z9n69enl_m6dWVGqMfOSpKgrYxGx9GiUtJZQGYXSldKrglbCKaqlVUYCoEGllK88lOhrKVAs2fW-dxuHzx2lUXchWWpb09OwS7ouVFGBgJnEPWnjkFIkr7cxdCb-aAQ9i9MbPYnTszgNlZ7ETZmrQ7tJ05M-mt6G9BdciVqUlRATd7vnJk30FSjqZMOszoVIdtRuCP9c-QVgDIJ6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849470301</pqid></control><display><type>article</type><title>Random matrix difference models arising in long-term medical drug strategies</title><source>Elsevier ScienceDirect Journals</source><creator>Calbo, G. ; Cortés, J.-C. ; Jódar, L.</creator><creatorcontrib>Calbo, G. ; Cortés, J.-C. ; Jódar, L.</creatorcontrib><description>This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.07.014</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Compartmental random models ; Difference and functional equations, recurrence relations ; Drugs ; Exact sciences and technology ; Finite differences and functional equations ; Initial conditions ; Linear and multilinear algebra, matrix theory ; Mathematical analysis ; Mathematical models ; Mathematics ; Mean square stability ; Mean square values ; Medical ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Stochastic processes ; Strategy ; Vector random difference equation</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (5), p.2149-2161</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</citedby><cites>FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2010.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23835733$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calbo, G.</creatorcontrib><creatorcontrib>Cortés, J.-C.</creatorcontrib><creatorcontrib>Jódar, L.</creatorcontrib><title>Random matrix difference models arising in long-term medical drug strategies</title><title>Applied mathematics and computation</title><description>This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.</description><subject>Algebra</subject><subject>Compartmental random models</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Drugs</subject><subject>Exact sciences and technology</subject><subject>Finite differences and functional equations</subject><subject>Initial conditions</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mean square stability</subject><subject>Mean square values</subject><subject>Medical</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Stochastic processes</subject><subject>Strategy</subject><subject>Vector random difference equation</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-5iKfWmU2bNngS8QsWBNFzCMmkZOnHmnRF_70tu3j0NAw87zvMw9glQo6A8maTm87mK5h2qHLA4ogtsK5EVspCHbMFgJKZABCn7CylDQBUEosFW7-Z3g0d78wYwzd3wXuK1Fvi3eCoTdzEkELf8NDzduibbKQ40eSCNS13cdfwNEYzUhMonbMTb9pEF4e5ZB-PD-_3z9n69enl_m6dWVGqMfOSpKgrYxGx9GiUtJZQGYXSldKrglbCKaqlVUYCoEGllK88lOhrKVAs2fW-dxuHzx2lUXchWWpb09OwS7ouVFGBgJnEPWnjkFIkr7cxdCb-aAQ9i9MbPYnTszgNlZ7ETZmrQ7tJ05M-mt6G9BdciVqUlRATd7vnJk30FSjqZMOszoVIdtRuCP9c-QVgDIJ6</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Calbo, G.</creator><creator>Cortés, J.-C.</creator><creator>Jódar, L.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101101</creationdate><title>Random matrix difference models arising in long-term medical drug strategies</title><author>Calbo, G. ; Cortés, J.-C. ; Jódar, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f6e6387ac1115f1a96cce19a916d56f94e23d9e86c9a6001a1999f7f051f86313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Compartmental random models</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Drugs</topic><topic>Exact sciences and technology</topic><topic>Finite differences and functional equations</topic><topic>Initial conditions</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mean square stability</topic><topic>Mean square values</topic><topic>Medical</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Stochastic processes</topic><topic>Strategy</topic><topic>Vector random difference equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calbo, G.</creatorcontrib><creatorcontrib>Cortés, J.-C.</creatorcontrib><creatorcontrib>Jódar, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calbo, G.</au><au>Cortés, J.-C.</au><au>Jódar, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random matrix difference models arising in long-term medical drug strategies</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>217</volume><issue>5</issue><spage>2149</spage><epage>2161</epage><pages>2149-2161</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>This paper deals with the construction of random discrete solutions of coupled linear difference equations, incorporating uncertainty into both the initial condition and the source term. First, sufficient conditions in order to guarantee mean square stability of the solution are provided, then the main statistical functions, such as mean and covariance of the discrete solution stochastic process, are given. Finally, illustrative examples of potential interest in long-time medical drug strategies are shown.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.07.014</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-11, Vol.217 (5), p.2149-2161 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_849470301 |
source | Elsevier ScienceDirect Journals |
subjects | Algebra Compartmental random models Difference and functional equations, recurrence relations Drugs Exact sciences and technology Finite differences and functional equations Initial conditions Linear and multilinear algebra, matrix theory Mathematical analysis Mathematical models Mathematics Mean square stability Mean square values Medical Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use Stochastic processes Strategy Vector random difference equation |
title | Random matrix difference models arising in long-term medical drug strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20matrix%20difference%20models%20arising%20in%20long-term%20medical%20drug%20strategies&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Calbo,%20G.&rft.date=2010-11-01&rft.volume=217&rft.issue=5&rft.spage=2149&rft.epage=2161&rft.pages=2149-2161&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.07.014&rft_dat=%3Cproquest_cross%3E849470301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849470301&rft_id=info:pmid/&rft_els_id=S0096300310007599&rfr_iscdi=true |