Linear Scheme for Finite Element Solution of Nonlinear Parabolic-Elliptic Problems with Nonhomogeneous Dirichlet Boundary Condition

The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ^sub 1^ of the boundary is studied in this paper. The problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of mathematics (Prague) 2001-04, Vol.46 (2), p.103-144
1. Verfasser: Rihova-Skabrahova, Dana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 2
container_start_page 103
container_title Applications of mathematics (Prague)
container_volume 46
creator Rihova-Skabrahova, Dana
description The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ^sub 1^ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary [partial differential]Ω is piecewise of class C^sup 3^ and the initial condition belongs to L^sub 2^ only. Strong monotonicity and Lipschitz continuity of the form a(v,w) is not an assumption, but a property of this form following from its physical background.[PUBLICATION ABSTRACT]
doi_str_mv 10.1023/A:1013783722140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849462619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849462619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2080-e80495765f5fe7c9bbf7045b96bf9be38ee264d33feda5bfa5463ae85bd97a8a3</originalsourceid><addsrcrecordid>eNpdkc1PGzEUxK2qSE2Bc69WL5y2-Gv90VsaQlspAiToeWXvPhMjx07tXVU984-zIVza00hPvzea0SD0iZIvlDB-ufxKCeVKc8UYFeQdWtBWscZQYt6jBdGSNcoI8gF9rPWJEGKk1gv0vAkJbMH3_RZ2gH0u-DqkMAJex_mQRnyf4zSGnHD2-CaneOTvbLEux9A36xjDfgw9vivZzT8V_wnj9oBu8y4_QoI8VXwVSui3EUb8LU9psOUvXuU0hIPzGTrxNlY4f9NT9Ot6_bD60Wxuv_9cLTdNz4gmDWgiTKtk61sPqjfOeUVE64x03jjgGoBJMXDuYbCt87YVklvQrRuMstryU3Rx9N2X_HuCOna7UHuI0b5m7LQwQjJJzUx-_o98ylNJc7hOScaEUeIAXR6hvuRaC_huX8JubtZR0h0m6ZbdP5PwF5AJgKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762249749</pqid></control><display><type>article</type><title>Linear Scheme for Finite Element Solution of Nonlinear Parabolic-Elliptic Problems with Nonhomogeneous Dirichlet Boundary Condition</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rihova-Skabrahova, Dana</creator><creatorcontrib>Rihova-Skabrahova, Dana</creatorcontrib><description>The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ^sub 1^ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary [partial differential]Ω is piecewise of class C^sup 3^ and the initial condition belongs to L^sub 2^ only. Strong monotonicity and Lipschitz continuity of the form a(v,w) is not an assumption, but a property of this form following from its physical background.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1023/A:1013783722140</identifier><language>eng</language><publisher>Prague: Springer Nature B.V</publisher><subject>Boundaries ; Boundary conditions ; Convergence ; Dirichlet problem ; Finite element analysis ; Finite element method ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Studies</subject><ispartof>Applications of mathematics (Prague), 2001-04, Vol.46 (2), p.103-144</ispartof><rights>Mathematical Institute, Academy of Sciences of Czech Republic 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2080-e80495765f5fe7c9bbf7045b96bf9be38ee264d33feda5bfa5463ae85bd97a8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rihova-Skabrahova, Dana</creatorcontrib><title>Linear Scheme for Finite Element Solution of Nonlinear Parabolic-Elliptic Problems with Nonhomogeneous Dirichlet Boundary Condition</title><title>Applications of mathematics (Prague)</title><description>The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ^sub 1^ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary [partial differential]Ω is piecewise of class C^sup 3^ and the initial condition belongs to L^sub 2^ only. Strong monotonicity and Lipschitz continuity of the form a(v,w) is not an assumption, but a property of this form following from its physical background.[PUBLICATION ABSTRACT]</description><subject>Boundaries</subject><subject>Boundary conditions</subject><subject>Convergence</subject><subject>Dirichlet problem</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Studies</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1PGzEUxK2qSE2Bc69WL5y2-Gv90VsaQlspAiToeWXvPhMjx07tXVU984-zIVza00hPvzea0SD0iZIvlDB-ufxKCeVKc8UYFeQdWtBWscZQYt6jBdGSNcoI8gF9rPWJEGKk1gv0vAkJbMH3_RZ2gH0u-DqkMAJex_mQRnyf4zSGnHD2-CaneOTvbLEux9A36xjDfgw9vivZzT8V_wnj9oBu8y4_QoI8VXwVSui3EUb8LU9psOUvXuU0hIPzGTrxNlY4f9NT9Ot6_bD60Wxuv_9cLTdNz4gmDWgiTKtk61sPqjfOeUVE64x03jjgGoBJMXDuYbCt87YVklvQrRuMstryU3Rx9N2X_HuCOna7UHuI0b5m7LQwQjJJzUx-_o98ylNJc7hOScaEUeIAXR6hvuRaC_huX8JubtZR0h0m6ZbdP5PwF5AJgKU</recordid><startdate>20010401</startdate><enddate>20010401</enddate><creator>Rihova-Skabrahova, Dana</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20010401</creationdate><title>Linear Scheme for Finite Element Solution of Nonlinear Parabolic-Elliptic Problems with Nonhomogeneous Dirichlet Boundary Condition</title><author>Rihova-Skabrahova, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2080-e80495765f5fe7c9bbf7045b96bf9be38ee264d33feda5bfa5463ae85bd97a8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Boundaries</topic><topic>Boundary conditions</topic><topic>Convergence</topic><topic>Dirichlet problem</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rihova-Skabrahova, Dana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rihova-Skabrahova, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linear Scheme for Finite Element Solution of Nonlinear Parabolic-Elliptic Problems with Nonhomogeneous Dirichlet Boundary Condition</atitle><jtitle>Applications of mathematics (Prague)</jtitle><date>2001-04-01</date><risdate>2001</risdate><volume>46</volume><issue>2</issue><spage>103</spage><epage>144</epage><pages>103-144</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part Γ^sub 1^ of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand side by the explicit Euler method). The scheme we get is linear. The strong convergence of the method is proved under the assumptions that the boundary [partial differential]Ω is piecewise of class C^sup 3^ and the initial condition belongs to L^sub 2^ only. Strong monotonicity and Lipschitz continuity of the form a(v,w) is not an assumption, but a property of this form following from its physical background.[PUBLICATION ABSTRACT]</abstract><cop>Prague</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1013783722140</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of mathematics (Prague), 2001-04, Vol.46 (2), p.103-144
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_miscellaneous_849462619
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Boundaries
Boundary conditions
Convergence
Dirichlet problem
Finite element analysis
Finite element method
Mathematical analysis
Mathematical models
Nonlinearity
Studies
title Linear Scheme for Finite Element Solution of Nonlinear Parabolic-Elliptic Problems with Nonhomogeneous Dirichlet Boundary Condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linear%20Scheme%20for%20Finite%20Element%20Solution%20of%20Nonlinear%20Parabolic-Elliptic%20Problems%20with%20Nonhomogeneous%20Dirichlet%20Boundary%20Condition&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Rihova-Skabrahova,%20Dana&rft.date=2001-04-01&rft.volume=46&rft.issue=2&rft.spage=103&rft.epage=144&rft.pages=103-144&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1023/A:1013783722140&rft_dat=%3Cproquest_cross%3E849462619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=762249749&rft_id=info:pmid/&rfr_iscdi=true