Molecular structure from a single NMR sequence (fast-PANACEA)

The PANACEA experiment combines three standard NMR pulse sequences (INADEQUATE, HSQC and HMBC) into a single entity, and is designed for spectrometers with two or more receivers operating in parallel. For small molecules it offers a direct route to molecular structure. Often the INADEQUATE feature i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2010-09, Vol.206 (1), p.147-153
Hauptverfasser: Kupče, Ēriks, Freeman, Ray
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue 1
container_start_page 147
container_title Journal of magnetic resonance (1997)
container_volume 206
creator Kupče, Ēriks
Freeman, Ray
description The PANACEA experiment combines three standard NMR pulse sequences (INADEQUATE, HSQC and HMBC) into a single entity, and is designed for spectrometers with two or more receivers operating in parallel. For small molecules it offers a direct route to molecular structure. Often the INADEQUATE feature is the rate-determining step, being limited by the low natural abundance of directly coupled 13C 13C pairs. This new version, fast-PANACEA, speeds up this measurement by two alternative schemes. In the first, the individual 13C sites are excited by selective radiofrequency pulses acting on double-quantum coherence, and encoded according to the rows of a Hadamard matrix. The columns of this matrix are used to decode the experimental data into separate F 2 spectra. This reduction in the number of required scans secures a faster result than the conventional stepwise exploration of the evolution dimension where the Nyquist condition and the resolution requirements must both be satisfied. The second scheme makes use of multiple aliasing in the evolution dimension. Significant speed improvements are achieved by either technique, illustrated by measurements made on samples of menthol and cholesterol. A new stabilization scheme (i-lock) is introduced. This is a software program that corrects the final NMR frequencies based on the observed frequency of a strong X-spin signal. It replaces the conventional deuterium lock, permitting measurements on neat liquids such as peanut oil and silicone oil, and offering advantages where deuterated solvents are undesirable.
doi_str_mv 10.1016/j.jmr.2010.06.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849458554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780710002065</els_id><sourcerecordid>849458554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-766995de28cf0db495d0984e9df51c7f583d5a7f45fae61beba8aae4481dc2ca3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlZ_gBfZm3rYOmmTbIJ4KKV-QFtF9BzS7ES27HZrsiv4701t9ainmYHnfRkeQk4p9ClQcbXsLyvfH0C8QfSByj3SpaBECpKL_e8d0kxC1iFHISwBKOUZHJLOAARXktIuuZnVJdq2ND4JjW9t03pMnK-rxCShWL2VmMxnz0nA9xZXFpMLZ0KTPo3mo_FkdHlMDpwpA57sZo-83k5exvfp9PHuYTyapnYoWZNmQijFcxxI6yBfsLiDkgxV7ji1meNymHOTOcadQUEXuDDSGGRM0twOrBn2yPm2d-3r-EhodFUEi2VpVli3QUumGJecs3_JjCkApdgwknRLWl-H4NHptS8q4z81Bb3Rq5c66tUbvRqEjnpj5mzX3i4qzH8TPz4jcL0FMNr4KNDrYIuNuLzwaBud18Uf9V_opIlM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>749009943</pqid></control><display><type>article</type><title>Molecular structure from a single NMR sequence (fast-PANACEA)</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kupče, Ēriks ; Freeman, Ray</creator><creatorcontrib>Kupče, Ēriks ; Freeman, Ray</creatorcontrib><description>The PANACEA experiment combines three standard NMR pulse sequences (INADEQUATE, HSQC and HMBC) into a single entity, and is designed for spectrometers with two or more receivers operating in parallel. For small molecules it offers a direct route to molecular structure. Often the INADEQUATE feature is the rate-determining step, being limited by the low natural abundance of directly coupled 13C 13C pairs. This new version, fast-PANACEA, speeds up this measurement by two alternative schemes. In the first, the individual 13C sites are excited by selective radiofrequency pulses acting on double-quantum coherence, and encoded according to the rows of a Hadamard matrix. The columns of this matrix are used to decode the experimental data into separate F 2 spectra. This reduction in the number of required scans secures a faster result than the conventional stepwise exploration of the evolution dimension where the Nyquist condition and the resolution requirements must both be satisfied. The second scheme makes use of multiple aliasing in the evolution dimension. Significant speed improvements are achieved by either technique, illustrated by measurements made on samples of menthol and cholesterol. A new stabilization scheme (i-lock) is introduced. This is a software program that corrects the final NMR frequencies based on the observed frequency of a strong X-spin signal. It replaces the conventional deuterium lock, permitting measurements on neat liquids such as peanut oil and silicone oil, and offering advantages where deuterated solvents are undesirable.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2010.06.018</identifier><identifier>PMID: 20659811</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>29Si ; Algorithms ; Aliasing ; Chloroform - chemistry ; Cholesterol ; Computer programs ; Deuteration ; Evolution ; Hadamard ; i-Lock ; INADEQUATE ; Indicators and Reagents ; Locks ; Magnetic resonance ; Magnetic Resonance Spectroscopy - instrumentation ; Magnetic Resonance Spectroscopy - methods ; Menthol ; Menthol - chemistry ; Models, Statistical ; Molecular structure ; Normal Distribution ; Nuclear magnetic resonance ; PANACEA ; Peanut oil ; Silicone oil ; Solvents ; Spectrometers</subject><ispartof>Journal of magnetic resonance (1997), 2010-09, Vol.206 (1), p.147-153</ispartof><rights>2010 Elsevier Inc.</rights><rights>(c) 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-766995de28cf0db495d0984e9df51c7f583d5a7f45fae61beba8aae4481dc2ca3</citedby><cites>FETCH-LOGICAL-c384t-766995de28cf0db495d0984e9df51c7f583d5a7f45fae61beba8aae4481dc2ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1090780710002065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20659811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kupče, Ēriks</creatorcontrib><creatorcontrib>Freeman, Ray</creatorcontrib><title>Molecular structure from a single NMR sequence (fast-PANACEA)</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>The PANACEA experiment combines three standard NMR pulse sequences (INADEQUATE, HSQC and HMBC) into a single entity, and is designed for spectrometers with two or more receivers operating in parallel. For small molecules it offers a direct route to molecular structure. Often the INADEQUATE feature is the rate-determining step, being limited by the low natural abundance of directly coupled 13C 13C pairs. This new version, fast-PANACEA, speeds up this measurement by two alternative schemes. In the first, the individual 13C sites are excited by selective radiofrequency pulses acting on double-quantum coherence, and encoded according to the rows of a Hadamard matrix. The columns of this matrix are used to decode the experimental data into separate F 2 spectra. This reduction in the number of required scans secures a faster result than the conventional stepwise exploration of the evolution dimension where the Nyquist condition and the resolution requirements must both be satisfied. The second scheme makes use of multiple aliasing in the evolution dimension. Significant speed improvements are achieved by either technique, illustrated by measurements made on samples of menthol and cholesterol. A new stabilization scheme (i-lock) is introduced. This is a software program that corrects the final NMR frequencies based on the observed frequency of a strong X-spin signal. It replaces the conventional deuterium lock, permitting measurements on neat liquids such as peanut oil and silicone oil, and offering advantages where deuterated solvents are undesirable.</description><subject>29Si</subject><subject>Algorithms</subject><subject>Aliasing</subject><subject>Chloroform - chemistry</subject><subject>Cholesterol</subject><subject>Computer programs</subject><subject>Deuteration</subject><subject>Evolution</subject><subject>Hadamard</subject><subject>i-Lock</subject><subject>INADEQUATE</subject><subject>Indicators and Reagents</subject><subject>Locks</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy - instrumentation</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Menthol</subject><subject>Menthol - chemistry</subject><subject>Models, Statistical</subject><subject>Molecular structure</subject><subject>Normal Distribution</subject><subject>Nuclear magnetic resonance</subject><subject>PANACEA</subject><subject>Peanut oil</subject><subject>Silicone oil</subject><subject>Solvents</subject><subject>Spectrometers</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEQhoMotlZ_gBfZm3rYOmmTbIJ4KKV-QFtF9BzS7ES27HZrsiv4701t9ainmYHnfRkeQk4p9ClQcbXsLyvfH0C8QfSByj3SpaBECpKL_e8d0kxC1iFHISwBKOUZHJLOAARXktIuuZnVJdq2ND4JjW9t03pMnK-rxCShWL2VmMxnz0nA9xZXFpMLZ0KTPo3mo_FkdHlMDpwpA57sZo-83k5exvfp9PHuYTyapnYoWZNmQijFcxxI6yBfsLiDkgxV7ji1meNymHOTOcadQUEXuDDSGGRM0twOrBn2yPm2d-3r-EhodFUEi2VpVli3QUumGJecs3_JjCkApdgwknRLWl-H4NHptS8q4z81Bb3Rq5c66tUbvRqEjnpj5mzX3i4qzH8TPz4jcL0FMNr4KNDrYIuNuLzwaBud18Uf9V_opIlM</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Kupče, Ēriks</creator><creator>Freeman, Ray</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100901</creationdate><title>Molecular structure from a single NMR sequence (fast-PANACEA)</title><author>Kupče, Ēriks ; Freeman, Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-766995de28cf0db495d0984e9df51c7f583d5a7f45fae61beba8aae4481dc2ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>29Si</topic><topic>Algorithms</topic><topic>Aliasing</topic><topic>Chloroform - chemistry</topic><topic>Cholesterol</topic><topic>Computer programs</topic><topic>Deuteration</topic><topic>Evolution</topic><topic>Hadamard</topic><topic>i-Lock</topic><topic>INADEQUATE</topic><topic>Indicators and Reagents</topic><topic>Locks</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy - instrumentation</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Menthol</topic><topic>Menthol - chemistry</topic><topic>Models, Statistical</topic><topic>Molecular structure</topic><topic>Normal Distribution</topic><topic>Nuclear magnetic resonance</topic><topic>PANACEA</topic><topic>Peanut oil</topic><topic>Silicone oil</topic><topic>Solvents</topic><topic>Spectrometers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kupče, Ēriks</creatorcontrib><creatorcontrib>Freeman, Ray</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kupče, Ēriks</au><au>Freeman, Ray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular structure from a single NMR sequence (fast-PANACEA)</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>206</volume><issue>1</issue><spage>147</spage><epage>153</epage><pages>147-153</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>The PANACEA experiment combines three standard NMR pulse sequences (INADEQUATE, HSQC and HMBC) into a single entity, and is designed for spectrometers with two or more receivers operating in parallel. For small molecules it offers a direct route to molecular structure. Often the INADEQUATE feature is the rate-determining step, being limited by the low natural abundance of directly coupled 13C 13C pairs. This new version, fast-PANACEA, speeds up this measurement by two alternative schemes. In the first, the individual 13C sites are excited by selective radiofrequency pulses acting on double-quantum coherence, and encoded according to the rows of a Hadamard matrix. The columns of this matrix are used to decode the experimental data into separate F 2 spectra. This reduction in the number of required scans secures a faster result than the conventional stepwise exploration of the evolution dimension where the Nyquist condition and the resolution requirements must both be satisfied. The second scheme makes use of multiple aliasing in the evolution dimension. Significant speed improvements are achieved by either technique, illustrated by measurements made on samples of menthol and cholesterol. A new stabilization scheme (i-lock) is introduced. This is a software program that corrects the final NMR frequencies based on the observed frequency of a strong X-spin signal. It replaces the conventional deuterium lock, permitting measurements on neat liquids such as peanut oil and silicone oil, and offering advantages where deuterated solvents are undesirable.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20659811</pmid><doi>10.1016/j.jmr.2010.06.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2010-09, Vol.206 (1), p.147-153
issn 1090-7807
1096-0856
language eng
recordid cdi_proquest_miscellaneous_849458554
source MEDLINE; Elsevier ScienceDirect Journals
subjects 29Si
Algorithms
Aliasing
Chloroform - chemistry
Cholesterol
Computer programs
Deuteration
Evolution
Hadamard
i-Lock
INADEQUATE
Indicators and Reagents
Locks
Magnetic resonance
Magnetic Resonance Spectroscopy - instrumentation
Magnetic Resonance Spectroscopy - methods
Menthol
Menthol - chemistry
Models, Statistical
Molecular structure
Normal Distribution
Nuclear magnetic resonance
PANACEA
Peanut oil
Silicone oil
Solvents
Spectrometers
title Molecular structure from a single NMR sequence (fast-PANACEA)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20structure%20from%20a%20single%20NMR%20sequence%20(fast-PANACEA)&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Kup%C4%8De,%20%C4%92riks&rft.date=2010-09-01&rft.volume=206&rft.issue=1&rft.spage=147&rft.epage=153&rft.pages=147-153&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2010.06.018&rft_dat=%3Cproquest_cross%3E849458554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=749009943&rft_id=info:pmid/20659811&rft_els_id=S1090780710002065&rfr_iscdi=true