Approximating the stability region of a neural network with a general distribution of delays

We investigate the linear stability of a neural network with distributed delay, where the neurons are identical. We examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. We determine a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2010-12, Vol.23 (10), p.1187-1201
Hauptverfasser: Jessop, R., Campbell, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 10
container_start_page 1187
container_title Neural networks
container_volume 23
creator Jessop, R.
Campbell, S.A.
description We investigate the linear stability of a neural network with distributed delay, where the neurons are identical. We examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. We determine a mean delay and distribution independent stability region. We then illustrate a way of improving on this conservative result by approximating the true region of stability when the actual distribution is not known, but some moments or cumulants of the distribution are known. Finally, we compare the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We show that the approximations improve as more moments or cumulants are used, and that the approximations using cumulants give better results than the ones using moments.
doi_str_mv 10.1016/j.neunet.2010.06.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849456972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089360801000122X</els_id><sourcerecordid>849456972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d5f6beb7aba378d7d1c15a7aaeec81ca3f6d4a91435c28fed2ce772b956c8c4d3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EaqePf4BQNohVhuvY8WNTqaqgIFViA7tKlmPfTD1kkqntUObf49EMsGtXVzr67uscQt5SWFKg4uN6OeI8Yl42UCQQSwD9iiyokrpupGpekwUozWoBCk7JWUprABCKsxNy2oDQouVqQe6vt9s4_Q4bm8O4qvIDVinbLgwh76qIqzCN1dRXtirLoh1KyU9T_Fk9hfxQ1BWOuJd9SDmGbs5H3uNgd-mCvOntkPDyWM_Jj8-fvt98qe--3X69ub6rHRc6177tRYedtJ1lUnnpqaOtldYiOkWdZb3w3GrKWesa1aNvHErZdLoVTjnu2Tn5cJhbXnmcMWWzCcnhMNgRpzkZxTVvhZbNi6RUEjiTmheSH0gXp5Qi9mYbi0txZyiYfQBmbQ4BmH0ABoQpAZS2d8cFc7dB_6_pr-MFeH8EbHJ26KMdXUj_OdYC18AKd3XgsBj3K2A0yQUcHfoQ0WXjp_D8JX8AXqSoCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>787043794</pqid></control><display><type>article</type><title>Approximating the stability region of a neural network with a general distribution of delays</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jessop, R. ; Campbell, S.A.</creator><creatorcontrib>Jessop, R. ; Campbell, S.A.</creatorcontrib><description>We investigate the linear stability of a neural network with distributed delay, where the neurons are identical. We examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. We determine a mean delay and distribution independent stability region. We then illustrate a way of improving on this conservative result by approximating the true region of stability when the actual distribution is not known, but some moments or cumulants of the distribution are known. Finally, we compare the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We show that the approximations improve as more moments or cumulants are used, and that the approximations using cumulants give better results than the ones using moments.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2010.06.009</identifier><identifier>PMID: 20696548</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Control system analysis ; Control theory. Systems ; Delay differential equations ; Delay independent stability ; Discrete delay ; Distributed delay ; Exact sciences and technology ; Linear stability ; Neural Networks (Computer) ; Neurons - physiology</subject><ispartof>Neural networks, 2010-12, Vol.23 (10), p.1187-1201</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-d5f6beb7aba378d7d1c15a7aaeec81ca3f6d4a91435c28fed2ce772b956c8c4d3</citedby><cites>FETCH-LOGICAL-c469t-d5f6beb7aba378d7d1c15a7aaeec81ca3f6d4a91435c28fed2ce772b956c8c4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2010.06.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23504903$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20696548$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jessop, R.</creatorcontrib><creatorcontrib>Campbell, S.A.</creatorcontrib><title>Approximating the stability region of a neural network with a general distribution of delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We investigate the linear stability of a neural network with distributed delay, where the neurons are identical. We examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. We determine a mean delay and distribution independent stability region. We then illustrate a way of improving on this conservative result by approximating the true region of stability when the actual distribution is not known, but some moments or cumulants of the distribution are known. Finally, we compare the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We show that the approximations improve as more moments or cumulants are used, and that the approximations using cumulants give better results than the ones using moments.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Control system analysis</subject><subject>Control theory. Systems</subject><subject>Delay differential equations</subject><subject>Delay independent stability</subject><subject>Discrete delay</subject><subject>Distributed delay</subject><subject>Exact sciences and technology</subject><subject>Linear stability</subject><subject>Neural Networks (Computer)</subject><subject>Neurons - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EaqePf4BQNohVhuvY8WNTqaqgIFViA7tKlmPfTD1kkqntUObf49EMsGtXVzr67uscQt5SWFKg4uN6OeI8Yl42UCQQSwD9iiyokrpupGpekwUozWoBCk7JWUprABCKsxNy2oDQouVqQe6vt9s4_Q4bm8O4qvIDVinbLgwh76qIqzCN1dRXtirLoh1KyU9T_Fk9hfxQ1BWOuJd9SDmGbs5H3uNgd-mCvOntkPDyWM_Jj8-fvt98qe--3X69ub6rHRc6177tRYedtJ1lUnnpqaOtldYiOkWdZb3w3GrKWesa1aNvHErZdLoVTjnu2Tn5cJhbXnmcMWWzCcnhMNgRpzkZxTVvhZbNi6RUEjiTmheSH0gXp5Qi9mYbi0txZyiYfQBmbQ4BmH0ABoQpAZS2d8cFc7dB_6_pr-MFeH8EbHJ26KMdXUj_OdYC18AKd3XgsBj3K2A0yQUcHfoQ0WXjp_D8JX8AXqSoCg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Jessop, R.</creator><creator>Campbell, S.A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20101201</creationdate><title>Approximating the stability region of a neural network with a general distribution of delays</title><author>Jessop, R. ; Campbell, S.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d5f6beb7aba378d7d1c15a7aaeec81ca3f6d4a91435c28fed2ce772b956c8c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Control system analysis</topic><topic>Control theory. Systems</topic><topic>Delay differential equations</topic><topic>Delay independent stability</topic><topic>Discrete delay</topic><topic>Distributed delay</topic><topic>Exact sciences and technology</topic><topic>Linear stability</topic><topic>Neural Networks (Computer)</topic><topic>Neurons - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jessop, R.</creatorcontrib><creatorcontrib>Campbell, S.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jessop, R.</au><au>Campbell, S.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximating the stability region of a neural network with a general distribution of delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>23</volume><issue>10</issue><spage>1187</spage><epage>1201</epage><pages>1187-1201</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We investigate the linear stability of a neural network with distributed delay, where the neurons are identical. We examine the stability of a symmetrical equilibrium point via the analysis of the characteristic equation both when the connection matrix is symmetric and when it is not. We determine a mean delay and distribution independent stability region. We then illustrate a way of improving on this conservative result by approximating the true region of stability when the actual distribution is not known, but some moments or cumulants of the distribution are known. Finally, we compare the approximate stability regions with the stability regions in the case of the uniform and gamma distributions. We show that the approximations improve as more moments or cumulants are used, and that the approximations using cumulants give better results than the ones using moments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>20696548</pmid><doi>10.1016/j.neunet.2010.06.009</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2010-12, Vol.23 (10), p.1187-1201
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_849456972
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Artificial Intelligence
Computer science
control theory
systems
Computer Simulation
Connectionism. Neural networks
Control system analysis
Control theory. Systems
Delay differential equations
Delay independent stability
Discrete delay
Distributed delay
Exact sciences and technology
Linear stability
Neural Networks (Computer)
Neurons - physiology
title Approximating the stability region of a neural network with a general distribution of delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximating%20the%20stability%20region%20of%20a%20neural%20network%20with%20a%20general%20distribution%20of%20delays&rft.jtitle=Neural%20networks&rft.au=Jessop,%20R.&rft.date=2010-12-01&rft.volume=23&rft.issue=10&rft.spage=1187&rft.epage=1201&rft.pages=1187-1201&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2010.06.009&rft_dat=%3Cproquest_cross%3E849456972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=787043794&rft_id=info:pmid/20696548&rft_els_id=S089360801000122X&rfr_iscdi=true