Graph marginalization for rapid assignment in wide-area surveillance

Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ad hoc networks 2011-03, Vol.9 (2), p.180-188
Hauptverfasser: Ebden, Mark, Roberts, Stephen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 180
container_title Ad hoc networks
container_volume 9
creator Ebden, Mark
Roberts, Stephen
description Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.
doi_str_mv 10.1016/j.adhoc.2010.06.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849454468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570870510000661</els_id><sourcerecordid>849454468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwC1i8MSXYcezEAwMqUJAqscBsGfvcukrjYidF8OtxKWJkutPde6d7H0KXlJSUUHG9LrVdBVNWJE-IKAmpjtCE8oYUbUPZ8V9P-Ck6S2mdBTKLJ-huHvV2hTc6Ln2vO_-lBx967ELEeeEt1in5Zb-BfsC-xx_eQqEjaJzGuAPfdbo3cI5OnO4SXPzWKXp9uH-ZPRaL5_nT7HZRGMb4UDiu64pTV3NtOeSPjHOMy4Y0koKsuKigFbohlllT8bo2xsnWSit4S7kwb2yKrg53tzG8j5AGtfHJwP4JCGNSbS3r7BNtVrKD0sSQUgSnttHnkJ-KErVHptbqB5naI1NEqEwku24OLsghdh6iSsZDDmh9BDMoG_y__m8pqnWb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849454468</pqid></control><display><type>article</type><title>Graph marginalization for rapid assignment in wide-area surveillance</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Ebden, Mark ; Roberts, Stephen</creator><creatorcontrib>Ebden, Mark ; Roberts, Stephen</creatorcontrib><description>Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.</description><identifier>ISSN: 1570-8705</identifier><identifier>EISSN: 1570-8713</identifier><identifier>DOI: 10.1016/j.adhoc.2010.06.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Agents ; Belief propagation ; Coalition formation ; Computer simulation ; Graphs ; Max-sum algorithm ; Networks ; Optimization ; Sensor networks ; Sensors ; Surveillance ; Tracking ; Utilities</subject><ispartof>Ad hoc networks, 2011-03, Vol.9 (2), p.180-188</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</citedby><cites>FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.adhoc.2010.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ebden, Mark</creatorcontrib><creatorcontrib>Roberts, Stephen</creatorcontrib><title>Graph marginalization for rapid assignment in wide-area surveillance</title><title>Ad hoc networks</title><description>Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.</description><subject>Agents</subject><subject>Belief propagation</subject><subject>Coalition formation</subject><subject>Computer simulation</subject><subject>Graphs</subject><subject>Max-sum algorithm</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sensor networks</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Tracking</subject><subject>Utilities</subject><issn>1570-8705</issn><issn>1570-8713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwC1i8MSXYcezEAwMqUJAqscBsGfvcukrjYidF8OtxKWJkutPde6d7H0KXlJSUUHG9LrVdBVNWJE-IKAmpjtCE8oYUbUPZ8V9P-Ck6S2mdBTKLJ-huHvV2hTc6Ln2vO_-lBx967ELEeeEt1in5Zb-BfsC-xx_eQqEjaJzGuAPfdbo3cI5OnO4SXPzWKXp9uH-ZPRaL5_nT7HZRGMb4UDiu64pTV3NtOeSPjHOMy4Y0koKsuKigFbohlllT8bo2xsnWSit4S7kwb2yKrg53tzG8j5AGtfHJwP4JCGNSbS3r7BNtVrKD0sSQUgSnttHnkJ-KErVHptbqB5naI1NEqEwku24OLsghdh6iSsZDDmh9BDMoG_y__m8pqnWb</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ebden, Mark</creator><creator>Roberts, Stephen</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Graph marginalization for rapid assignment in wide-area surveillance</title><author>Ebden, Mark ; Roberts, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agents</topic><topic>Belief propagation</topic><topic>Coalition formation</topic><topic>Computer simulation</topic><topic>Graphs</topic><topic>Max-sum algorithm</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sensor networks</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Tracking</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebden, Mark</creatorcontrib><creatorcontrib>Roberts, Stephen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ad hoc networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebden, Mark</au><au>Roberts, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph marginalization for rapid assignment in wide-area surveillance</atitle><jtitle>Ad hoc networks</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>9</volume><issue>2</issue><spage>180</spage><epage>188</epage><pages>180-188</pages><issn>1570-8705</issn><eissn>1570-8713</eissn><abstract>Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.adhoc.2010.06.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-8705
ispartof Ad hoc networks, 2011-03, Vol.9 (2), p.180-188
issn 1570-8705
1570-8713
language eng
recordid cdi_proquest_miscellaneous_849454468
source ScienceDirect Freedom Collection (Elsevier)
subjects Agents
Belief propagation
Coalition formation
Computer simulation
Graphs
Max-sum algorithm
Networks
Optimization
Sensor networks
Sensors
Surveillance
Tracking
Utilities
title Graph marginalization for rapid assignment in wide-area surveillance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20marginalization%20for%20rapid%20assignment%20in%20wide-area%20surveillance&rft.jtitle=Ad%20hoc%20networks&rft.au=Ebden,%20Mark&rft.date=2011-03-01&rft.volume=9&rft.issue=2&rft.spage=180&rft.epage=188&rft.pages=180-188&rft.issn=1570-8705&rft.eissn=1570-8713&rft_id=info:doi/10.1016/j.adhoc.2010.06.002&rft_dat=%3Cproquest_cross%3E849454468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849454468&rft_id=info:pmid/&rft_els_id=S1570870510000661&rfr_iscdi=true