Graph marginalization for rapid assignment in wide-area surveillance
Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbit...
Gespeichert in:
Veröffentlicht in: | Ad hoc networks 2011-03, Vol.9 (2), p.180-188 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188 |
---|---|
container_issue | 2 |
container_start_page | 180 |
container_title | Ad hoc networks |
container_volume | 9 |
creator | Ebden, Mark Roberts, Stephen |
description | Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality. |
doi_str_mv | 10.1016/j.adhoc.2010.06.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849454468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570870510000661</els_id><sourcerecordid>849454468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwC1i8MSXYcezEAwMqUJAqscBsGfvcukrjYidF8OtxKWJkutPde6d7H0KXlJSUUHG9LrVdBVNWJE-IKAmpjtCE8oYUbUPZ8V9P-Ck6S2mdBTKLJ-huHvV2hTc6Ln2vO_-lBx967ELEeeEt1in5Zb-BfsC-xx_eQqEjaJzGuAPfdbo3cI5OnO4SXPzWKXp9uH-ZPRaL5_nT7HZRGMb4UDiu64pTV3NtOeSPjHOMy4Y0koKsuKigFbohlllT8bo2xsnWSit4S7kwb2yKrg53tzG8j5AGtfHJwP4JCGNSbS3r7BNtVrKD0sSQUgSnttHnkJ-KErVHptbqB5naI1NEqEwku24OLsghdh6iSsZDDmh9BDMoG_y__m8pqnWb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849454468</pqid></control><display><type>article</type><title>Graph marginalization for rapid assignment in wide-area surveillance</title><source>ScienceDirect Freedom Collection (Elsevier)</source><creator>Ebden, Mark ; Roberts, Stephen</creator><creatorcontrib>Ebden, Mark ; Roberts, Stephen</creatorcontrib><description>Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.</description><identifier>ISSN: 1570-8705</identifier><identifier>EISSN: 1570-8713</identifier><identifier>DOI: 10.1016/j.adhoc.2010.06.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Agents ; Belief propagation ; Coalition formation ; Computer simulation ; Graphs ; Max-sum algorithm ; Networks ; Optimization ; Sensor networks ; Sensors ; Surveillance ; Tracking ; Utilities</subject><ispartof>Ad hoc networks, 2011-03, Vol.9 (2), p.180-188</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</citedby><cites>FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.adhoc.2010.06.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ebden, Mark</creatorcontrib><creatorcontrib>Roberts, Stephen</creatorcontrib><title>Graph marginalization for rapid assignment in wide-area surveillance</title><title>Ad hoc networks</title><description>Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.</description><subject>Agents</subject><subject>Belief propagation</subject><subject>Coalition formation</subject><subject>Computer simulation</subject><subject>Graphs</subject><subject>Max-sum algorithm</subject><subject>Networks</subject><subject>Optimization</subject><subject>Sensor networks</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Tracking</subject><subject>Utilities</subject><issn>1570-8705</issn><issn>1570-8713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwC1i8MSXYcezEAwMqUJAqscBsGfvcukrjYidF8OtxKWJkutPde6d7H0KXlJSUUHG9LrVdBVNWJE-IKAmpjtCE8oYUbUPZ8V9P-Ck6S2mdBTKLJ-huHvV2hTc6Ln2vO_-lBx967ELEeeEt1in5Zb-BfsC-xx_eQqEjaJzGuAPfdbo3cI5OnO4SXPzWKXp9uH-ZPRaL5_nT7HZRGMb4UDiu64pTV3NtOeSPjHOMy4Y0koKsuKigFbohlllT8bo2xsnWSit4S7kwb2yKrg53tzG8j5AGtfHJwP4JCGNSbS3r7BNtVrKD0sSQUgSnttHnkJ-KErVHptbqB5naI1NEqEwku24OLsghdh6iSsZDDmh9BDMoG_y__m8pqnWb</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Ebden, Mark</creator><creator>Roberts, Stephen</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110301</creationdate><title>Graph marginalization for rapid assignment in wide-area surveillance</title><author>Ebden, Mark ; Roberts, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f5a4251f45ad5e157cff35970791e92562e86a70d3dc2544ccf98d9d658156cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agents</topic><topic>Belief propagation</topic><topic>Coalition formation</topic><topic>Computer simulation</topic><topic>Graphs</topic><topic>Max-sum algorithm</topic><topic>Networks</topic><topic>Optimization</topic><topic>Sensor networks</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Tracking</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebden, Mark</creatorcontrib><creatorcontrib>Roberts, Stephen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Ad hoc networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebden, Mark</au><au>Roberts, Stephen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph marginalization for rapid assignment in wide-area surveillance</atitle><jtitle>Ad hoc networks</jtitle><date>2011-03-01</date><risdate>2011</risdate><volume>9</volume><issue>2</issue><spage>180</spage><epage>188</epage><pages>180-188</pages><issn>1570-8705</issn><eissn>1570-8713</eissn><abstract>Decentralizing optimization problems across a network can reduce the time required to achieve a solution. We consider a wide-area surveillance sensor network observing an environment by varying the state of each sensor so as to assign it to one or more moving objects. The aim is to maximize an arbitrary utility function related to object tracking or object identification, using graph marginalization in the form of belief propagation. The algorithm performs well in an example application with six heterogeneous sensors. In larger network simulations, the time savings owing to decentralization quickly exceed 90%, with no reduction in optimality.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.adhoc.2010.06.002</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-8705 |
ispartof | Ad hoc networks, 2011-03, Vol.9 (2), p.180-188 |
issn | 1570-8705 1570-8713 |
language | eng |
recordid | cdi_proquest_miscellaneous_849454468 |
source | ScienceDirect Freedom Collection (Elsevier) |
subjects | Agents Belief propagation Coalition formation Computer simulation Graphs Max-sum algorithm Networks Optimization Sensor networks Sensors Surveillance Tracking Utilities |
title | Graph marginalization for rapid assignment in wide-area surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20marginalization%20for%20rapid%20assignment%20in%20wide-area%20surveillance&rft.jtitle=Ad%20hoc%20networks&rft.au=Ebden,%20Mark&rft.date=2011-03-01&rft.volume=9&rft.issue=2&rft.spage=180&rft.epage=188&rft.pages=180-188&rft.issn=1570-8705&rft.eissn=1570-8713&rft_id=info:doi/10.1016/j.adhoc.2010.06.002&rft_dat=%3Cproquest_cross%3E849454468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849454468&rft_id=info:pmid/&rft_els_id=S1570870510000661&rfr_iscdi=true |