Optimization strategies for non-linear material parameters identification in metal forming problems
The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are con...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2011, Vol.89 (1), p.246-255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 246 |
container_title | Computers & structures |
container_volume | 89 |
creator | de-Carvalho, R. Valente, R.A.F. Andrade-Campos, A. |
description | The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results.
In this work three constitutive models were considered, namely, a non-linear elastic
–plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening.
For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA).
The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models.
It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers. |
doi_str_mv | 10.1016/j.compstruc.2010.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849453612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794910002221</els_id><sourcerecordid>849453612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3kAvilLB-NI8jQrykSlzgbDnOGm2VOMFOkeDrcWnFldNqd2d2ZoexSw4FB17ebAo7DlOcw9YWAn6nBYA4YgteV00uhJLHbAGgVnnVqOaUncW4AYBSASyYfZlmGujbzDT6LF0xM74TxsyNIfOjz3vyaEI2pHkg02eTCWbA1MSMOvQzObJ7MvksLRIkUQfy79kUxrbHIZ6zE2f6iBeHumRvD_evd0_5-uXx-e52nVul5Jwjb4xrOdTtqpbCQddK6NBBzZ1rpahVCbID17k2WZfJfWltjc4IY1pZVk4u2fX-bhL-2GKc9UDRYt8bj-M26lo1aiVLLhKy2iNtGGMM6PQUaDDhS3PQu1T1Rv-lqnep7hYp1cS8OmiYaE3vgvGW4h9dSKWqVTK6ZLd7HKaHPwmDjpbQW-wooJ11N9K_Wj8b7ZU6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849453612</pqid></control><display><type>article</type><title>Optimization strategies for non-linear material parameters identification in metal forming problems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>de-Carvalho, R. ; Valente, R.A.F. ; Andrade-Campos, A.</creator><creatorcontrib>de-Carvalho, R. ; Valente, R.A.F. ; Andrade-Campos, A.</creatorcontrib><description>The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results.
In this work three constitutive models were considered, namely, a non-linear elastic
–plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening.
For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA).
The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models.
It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2010.10.002</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Constitutive relationships ; Evolutionary algorithms ; Exact sciences and technology ; Finite element method ; Forming ; Fundamental areas of phenomenology (including applications) ; Gradient-based algorithms ; Inelasticity (thermoplasticity, viscoplasticity...) ; Inverse problems ; Mathematical analysis ; Mathematical models ; Measurement and testing methods ; Metals. Metallurgy ; Optimization ; Optimization strategies ; Parameter identification ; Physics ; Production techniques ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Strategy ; Structural and continuum mechanics</subject><ispartof>Computers & structures, 2011, Vol.89 (1), p.246-255</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</citedby><cites>FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2010.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23447560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de-Carvalho, R.</creatorcontrib><creatorcontrib>Valente, R.A.F.</creatorcontrib><creatorcontrib>Andrade-Campos, A.</creatorcontrib><title>Optimization strategies for non-linear material parameters identification in metal forming problems</title><title>Computers & structures</title><description>The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results.
In this work three constitutive models were considered, namely, a non-linear elastic
–plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening.
For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA).
The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models.
It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.</description><subject>Applied sciences</subject><subject>Constitutive relationships</subject><subject>Evolutionary algorithms</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Forming</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gradient-based algorithms</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement and testing methods</subject><subject>Metals. Metallurgy</subject><subject>Optimization</subject><subject>Optimization strategies</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Strategy</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3kAvilLB-NI8jQrykSlzgbDnOGm2VOMFOkeDrcWnFldNqd2d2ZoexSw4FB17ebAo7DlOcw9YWAn6nBYA4YgteV00uhJLHbAGgVnnVqOaUncW4AYBSASyYfZlmGujbzDT6LF0xM74TxsyNIfOjz3vyaEI2pHkg02eTCWbA1MSMOvQzObJ7MvksLRIkUQfy79kUxrbHIZ6zE2f6iBeHumRvD_evd0_5-uXx-e52nVul5Jwjb4xrOdTtqpbCQddK6NBBzZ1rpahVCbID17k2WZfJfWltjc4IY1pZVk4u2fX-bhL-2GKc9UDRYt8bj-M26lo1aiVLLhKy2iNtGGMM6PQUaDDhS3PQu1T1Rv-lqnep7hYp1cS8OmiYaE3vgvGW4h9dSKWqVTK6ZLd7HKaHPwmDjpbQW-wooJ11N9K_Wj8b7ZU6</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>de-Carvalho, R.</creator><creator>Valente, R.A.F.</creator><creator>Andrade-Campos, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Optimization strategies for non-linear material parameters identification in metal forming problems</title><author>de-Carvalho, R. ; Valente, R.A.F. ; Andrade-Campos, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Constitutive relationships</topic><topic>Evolutionary algorithms</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Forming</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gradient-based algorithms</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement and testing methods</topic><topic>Metals. Metallurgy</topic><topic>Optimization</topic><topic>Optimization strategies</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Strategy</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de-Carvalho, R.</creatorcontrib><creatorcontrib>Valente, R.A.F.</creatorcontrib><creatorcontrib>Andrade-Campos, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de-Carvalho, R.</au><au>Valente, R.A.F.</au><au>Andrade-Campos, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization strategies for non-linear material parameters identification in metal forming problems</atitle><jtitle>Computers & structures</jtitle><date>2011</date><risdate>2011</risdate><volume>89</volume><issue>1</issue><spage>246</spage><epage>255</epage><pages>246-255</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results.
In this work three constitutive models were considered, namely, a non-linear elastic
–plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening.
For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA).
The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models.
It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2010.10.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2011, Vol.89 (1), p.246-255 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_proquest_miscellaneous_849453612 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Constitutive relationships Evolutionary algorithms Exact sciences and technology Finite element method Forming Fundamental areas of phenomenology (including applications) Gradient-based algorithms Inelasticity (thermoplasticity, viscoplasticity...) Inverse problems Mathematical analysis Mathematical models Measurement and testing methods Metals. Metallurgy Optimization Optimization strategies Parameter identification Physics Production techniques Solid mechanics Static elasticity (thermoelasticity...) Strategy Structural and continuum mechanics |
title | Optimization strategies for non-linear material parameters identification in metal forming problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20strategies%20for%20non-linear%20material%20parameters%20identification%20in%20metal%20forming%20problems&rft.jtitle=Computers%20&%20structures&rft.au=de-Carvalho,%20R.&rft.date=2011&rft.volume=89&rft.issue=1&rft.spage=246&rft.epage=255&rft.pages=246-255&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2010.10.002&rft_dat=%3Cproquest_cross%3E849453612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849453612&rft_id=info:pmid/&rft_els_id=S0045794910002221&rfr_iscdi=true |