Optimization strategies for non-linear material parameters identification in metal forming problems

The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & structures 2011, Vol.89 (1), p.246-255
Hauptverfasser: de-Carvalho, R., Valente, R.A.F., Andrade-Campos, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 246
container_title Computers & structures
container_volume 89
creator de-Carvalho, R.
Valente, R.A.F.
Andrade-Campos, A.
description The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results. In this work three constitutive models were considered, namely, a non-linear elastic –plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening. For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA). The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models. It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.
doi_str_mv 10.1016/j.compstruc.2010.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849453612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794910002221</els_id><sourcerecordid>849453612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3kAvilLB-NI8jQrykSlzgbDnOGm2VOMFOkeDrcWnFldNqd2d2ZoexSw4FB17ebAo7DlOcw9YWAn6nBYA4YgteV00uhJLHbAGgVnnVqOaUncW4AYBSASyYfZlmGujbzDT6LF0xM74TxsyNIfOjz3vyaEI2pHkg02eTCWbA1MSMOvQzObJ7MvksLRIkUQfy79kUxrbHIZ6zE2f6iBeHumRvD_evd0_5-uXx-e52nVul5Jwjb4xrOdTtqpbCQddK6NBBzZ1rpahVCbID17k2WZfJfWltjc4IY1pZVk4u2fX-bhL-2GKc9UDRYt8bj-M26lo1aiVLLhKy2iNtGGMM6PQUaDDhS3PQu1T1Rv-lqnep7hYp1cS8OmiYaE3vgvGW4h9dSKWqVTK6ZLd7HKaHPwmDjpbQW-wooJ11N9K_Wj8b7ZU6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849453612</pqid></control><display><type>article</type><title>Optimization strategies for non-linear material parameters identification in metal forming problems</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>de-Carvalho, R. ; Valente, R.A.F. ; Andrade-Campos, A.</creator><creatorcontrib>de-Carvalho, R. ; Valente, R.A.F. ; Andrade-Campos, A.</creatorcontrib><description>The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results. In this work three constitutive models were considered, namely, a non-linear elastic –plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening. For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA). The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models. It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2010.10.002</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Constitutive relationships ; Evolutionary algorithms ; Exact sciences and technology ; Finite element method ; Forming ; Fundamental areas of phenomenology (including applications) ; Gradient-based algorithms ; Inelasticity (thermoplasticity, viscoplasticity...) ; Inverse problems ; Mathematical analysis ; Mathematical models ; Measurement and testing methods ; Metals. Metallurgy ; Optimization ; Optimization strategies ; Parameter identification ; Physics ; Production techniques ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Strategy ; Structural and continuum mechanics</subject><ispartof>Computers &amp; structures, 2011, Vol.89 (1), p.246-255</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</citedby><cites>FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2010.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23447560$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de-Carvalho, R.</creatorcontrib><creatorcontrib>Valente, R.A.F.</creatorcontrib><creatorcontrib>Andrade-Campos, A.</creatorcontrib><title>Optimization strategies for non-linear material parameters identification in metal forming problems</title><title>Computers &amp; structures</title><description>The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results. In this work three constitutive models were considered, namely, a non-linear elastic –plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening. For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA). The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models. It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.</description><subject>Applied sciences</subject><subject>Constitutive relationships</subject><subject>Evolutionary algorithms</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Forming</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gradient-based algorithms</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement and testing methods</subject><subject>Metals. Metallurgy</subject><subject>Optimization</subject><subject>Optimization strategies</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Strategy</subject><subject>Structural and continuum mechanics</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3kAvilLB-NI8jQrykSlzgbDnOGm2VOMFOkeDrcWnFldNqd2d2ZoexSw4FB17ebAo7DlOcw9YWAn6nBYA4YgteV00uhJLHbAGgVnnVqOaUncW4AYBSASyYfZlmGujbzDT6LF0xM74TxsyNIfOjz3vyaEI2pHkg02eTCWbA1MSMOvQzObJ7MvksLRIkUQfy79kUxrbHIZ6zE2f6iBeHumRvD_evd0_5-uXx-e52nVul5Jwjb4xrOdTtqpbCQddK6NBBzZ1rpahVCbID17k2WZfJfWltjc4IY1pZVk4u2fX-bhL-2GKc9UDRYt8bj-M26lo1aiVLLhKy2iNtGGMM6PQUaDDhS3PQu1T1Rv-lqnep7hYp1cS8OmiYaE3vgvGW4h9dSKWqVTK6ZLd7HKaHPwmDjpbQW-wooJ11N9K_Wj8b7ZU6</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>de-Carvalho, R.</creator><creator>Valente, R.A.F.</creator><creator>Andrade-Campos, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Optimization strategies for non-linear material parameters identification in metal forming problems</title><author>de-Carvalho, R. ; Valente, R.A.F. ; Andrade-Campos, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-e19afb108b5832f0db30def081ffb3284603d0fdfb64034006cc8efa2aab367f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Constitutive relationships</topic><topic>Evolutionary algorithms</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Forming</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gradient-based algorithms</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement and testing methods</topic><topic>Metals. Metallurgy</topic><topic>Optimization</topic><topic>Optimization strategies</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Strategy</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de-Carvalho, R.</creatorcontrib><creatorcontrib>Valente, R.A.F.</creatorcontrib><creatorcontrib>Andrade-Campos, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de-Carvalho, R.</au><au>Valente, R.A.F.</au><au>Andrade-Campos, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization strategies for non-linear material parameters identification in metal forming problems</atitle><jtitle>Computers &amp; structures</jtitle><date>2011</date><risdate>2011</risdate><volume>89</volume><issue>1</issue><spage>246</spage><epage>255</epage><pages>246-255</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>The quality of Finite Element Analysis (FEM) results relies on the input data, such as the material constitutive models. In order to achieve the best material parameters for the material constitutive models assumed a priori to represent the material, parameter identification inverse problems are considered. These inverse problems attempt to lead to the most accurate results with respect to physical experiments, i.e. minimizing the difference between experimental and numerical results. In this work three constitutive models were considered, namely, a non-linear elastic –plastic hardening model, a hyperelastic model -more specifically the Ogden model- and an elasto-viscoplastic model with isotropic and kinematic work-hardening. For the determination of the best suited material parameter set, two different optimization algorithms were used: (i) the Levenberg–Marquardt algorithm, which is gradient-based and (ii) a real search-space evolutionary algorithm (EA). The robustness and efficiency of classical single-stage optimization methods can be improved with new optimization strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. These strategies were implemented and analysed for the material parameters determination of the above referred material constitutive models. It was observed that the developed strategies lead to better values of the objective function when compared with the single-stage optimizers.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2010.10.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7949
ispartof Computers & structures, 2011, Vol.89 (1), p.246-255
issn 0045-7949
1879-2243
language eng
recordid cdi_proquest_miscellaneous_849453612
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Constitutive relationships
Evolutionary algorithms
Exact sciences and technology
Finite element method
Forming
Fundamental areas of phenomenology (including applications)
Gradient-based algorithms
Inelasticity (thermoplasticity, viscoplasticity...)
Inverse problems
Mathematical analysis
Mathematical models
Measurement and testing methods
Metals. Metallurgy
Optimization
Optimization strategies
Parameter identification
Physics
Production techniques
Solid mechanics
Static elasticity (thermoelasticity...)
Strategy
Structural and continuum mechanics
title Optimization strategies for non-linear material parameters identification in metal forming problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20strategies%20for%20non-linear%20material%20parameters%20identification%20in%20metal%20forming%20problems&rft.jtitle=Computers%20&%20structures&rft.au=de-Carvalho,%20R.&rft.date=2011&rft.volume=89&rft.issue=1&rft.spage=246&rft.epage=255&rft.pages=246-255&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2010.10.002&rft_dat=%3Cproquest_cross%3E849453612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849453612&rft_id=info:pmid/&rft_els_id=S0045794910002221&rfr_iscdi=true