Generating generalized inverse Gaussian random variates by fast inversion

The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2011, Vol.55 (1), p.213-217
Hauptverfasser: Leydold, Josef, Hörmann, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 1
container_start_page 213
container_title Computational statistics & data analysis
container_volume 55
creator Leydold, Josef
Hörmann, Wolfgang
description The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distributions are often not available. The (generalized) inverse Gaussian distribution is a prominent example. It is shown that algorithms that are based on polynomial approximation are well suited for this distribution. Their precision is close to machine precision and they are much faster than root finding methods like the bisection method that has been recently proposed.
doi_str_mv 10.1016/j.csda.2010.07.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849451020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947310002847</els_id><sourcerecordid>849451020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-62f6f4b2b9ac25ae74fc26f4e7767bbb1c737971a7ba306d579069c61aadadf13</originalsourceid><addsrcrecordid>eNp9kE9P4zAQxS20SHSBL8Apl9WeUvwnyTQSF4R2CwiJC5ytiTMBV6nT9aSVyqdfh1YcOYzHGv3em9ET4krJuZKqul7NHbc41zINJMylUidiphagczCl_iFmCYK8LsCciZ_MKymlLmAxEw9LChRx9OEte_v89v6D2syHHUWmbIlbZo8hixjaYZ3tMHocibNmn3XI4xH0Q7gQpx32TJfHfi5e__55ubvPn56XD3e3T7lL28e80l3VFY1uanS6RIKiczpNCKCCpmmUAwM1KIQGjazaEmpZ1a5SiC22nTLn4vfBdxOHf1vi0a49O-p7DDRs2S6KuiiV1DKR-kC6ODBH6uwm-jXGvVXSTrHZlZ1is1NsVoJNsSXR40EUaUPuS0FEExrQ7qzBskzPPlVSqtR8qqlvppEyViuw7-M6mf063orssO9SiM7zl6k2Riu5gMTdHDhKwe08RcvOU3DU-khutO3gv7v5P4yNnPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849451020</pqid></control><display><type>article</type><title>Generating generalized inverse Gaussian random variates by fast inversion</title><source>RePEc</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Leydold, Josef ; Hörmann, Wolfgang</creator><creatorcontrib>Leydold, Josef ; Hörmann, Wolfgang</creatorcontrib><description>The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distributions are often not available. The (generalized) inverse Gaussian distribution is a prominent example. It is shown that algorithms that are based on polynomial approximation are well suited for this distribution. Their precision is close to machine precision and they are much faster than root finding methods like the bisection method that has been recently proposed.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2010.07.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximation ; Computer simulation ; Distribution theory ; Exact sciences and technology ; General topics ; Generalized inverse Gaussian distribution ; Generalized inverse Gaussian distribution Random variate generation Numerical inversion ; Inverse ; Inversions ; Mathematical analysis ; Mathematical models ; Mathematics ; Monte Carlo methods ; Multivariate analysis ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical inversion ; Numerical methods in probability and statistics ; Probability and statistics ; Random variate generation ; Sciences and techniques of general use ; Statistics</subject><ispartof>Computational statistics &amp; data analysis, 2011, Vol.55 (1), p.213-217</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-62f6f4b2b9ac25ae74fc26f4e7767bbb1c737971a7ba306d579069c61aadadf13</citedby><cites>FETCH-LOGICAL-c473t-62f6f4b2b9ac25ae74fc26f4e7767bbb1c737971a7ba306d579069c61aadadf13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947310002847$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,3994,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23321087$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeecsdana/v_3a55_3ay_3a2011_3ai_3a1_3ap_3a213-217.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Leydold, Josef</creatorcontrib><creatorcontrib>Hörmann, Wolfgang</creatorcontrib><title>Generating generalized inverse Gaussian random variates by fast inversion</title><title>Computational statistics &amp; data analysis</title><description>The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distributions are often not available. The (generalized) inverse Gaussian distribution is a prominent example. It is shown that algorithms that are based on polynomial approximation are well suited for this distribution. Their precision is close to machine precision and they are much faster than root finding methods like the bisection method that has been recently proposed.</description><subject>Approximation</subject><subject>Computer simulation</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Generalized inverse Gaussian distribution</subject><subject>Generalized inverse Gaussian distribution Random variate generation Numerical inversion</subject><subject>Inverse</subject><subject>Inversions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Monte Carlo methods</subject><subject>Multivariate analysis</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical inversion</subject><subject>Numerical methods in probability and statistics</subject><subject>Probability and statistics</subject><subject>Random variate generation</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kE9P4zAQxS20SHSBL8Apl9WeUvwnyTQSF4R2CwiJC5ytiTMBV6nT9aSVyqdfh1YcOYzHGv3em9ET4krJuZKqul7NHbc41zINJMylUidiphagczCl_iFmCYK8LsCciZ_MKymlLmAxEw9LChRx9OEte_v89v6D2syHHUWmbIlbZo8hixjaYZ3tMHocibNmn3XI4xH0Q7gQpx32TJfHfi5e__55ubvPn56XD3e3T7lL28e80l3VFY1uanS6RIKiczpNCKCCpmmUAwM1KIQGjazaEmpZ1a5SiC22nTLn4vfBdxOHf1vi0a49O-p7DDRs2S6KuiiV1DKR-kC6ODBH6uwm-jXGvVXSTrHZlZ1is1NsVoJNsSXR40EUaUPuS0FEExrQ7qzBskzPPlVSqtR8qqlvppEyViuw7-M6mf063orssO9SiM7zl6k2Riu5gMTdHDhKwe08RcvOU3DU-khutO3gv7v5P4yNnPA</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Leydold, Josef</creator><creator>Hörmann, Wolfgang</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Generating generalized inverse Gaussian random variates by fast inversion</title><author>Leydold, Josef ; Hörmann, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-62f6f4b2b9ac25ae74fc26f4e7767bbb1c737971a7ba306d579069c61aadadf13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Computer simulation</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Generalized inverse Gaussian distribution</topic><topic>Generalized inverse Gaussian distribution Random variate generation Numerical inversion</topic><topic>Inverse</topic><topic>Inversions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Monte Carlo methods</topic><topic>Multivariate analysis</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical inversion</topic><topic>Numerical methods in probability and statistics</topic><topic>Probability and statistics</topic><topic>Random variate generation</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leydold, Josef</creatorcontrib><creatorcontrib>Hörmann, Wolfgang</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leydold, Josef</au><au>Hörmann, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating generalized inverse Gaussian random variates by fast inversion</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2011</date><risdate>2011</risdate><volume>55</volume><issue>1</issue><spage>213</spage><epage>217</epage><pages>213-217</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distributions are often not available. The (generalized) inverse Gaussian distribution is a prominent example. It is shown that algorithms that are based on polynomial approximation are well suited for this distribution. Their precision is close to machine precision and they are much faster than root finding methods like the bisection method that has been recently proposed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2010.07.011</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2011, Vol.55 (1), p.213-217
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_849451020
source RePEc; ScienceDirect Journals (5 years ago - present)
subjects Approximation
Computer simulation
Distribution theory
Exact sciences and technology
General topics
Generalized inverse Gaussian distribution
Generalized inverse Gaussian distribution Random variate generation Numerical inversion
Inverse
Inversions
Mathematical analysis
Mathematical models
Mathematics
Monte Carlo methods
Multivariate analysis
Numerical analysis
Numerical analysis. Scientific computation
Numerical inversion
Numerical methods in probability and statistics
Probability and statistics
Random variate generation
Sciences and techniques of general use
Statistics
title Generating generalized inverse Gaussian random variates by fast inversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20generalized%20inverse%20Gaussian%20random%20variates%20by%20fast%20inversion&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Leydold,%20Josef&rft.date=2011&rft.volume=55&rft.issue=1&rft.spage=213&rft.epage=217&rft.pages=213-217&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2010.07.011&rft_dat=%3Cproquest_cross%3E849451020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849451020&rft_id=info:pmid/&rft_els_id=S0167947310002847&rfr_iscdi=true