Investigations of spherulitic growth in industrial crystallization
The discrimination between crystal growth and aggregation is of crucial importance for the control of morphology and particle size in crystallization processes, as they are influenced in very different ways by the industrial processing environment. A collection of resembling solution-grown polycryst...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2010-09, Vol.88 (9), p.1163-1168 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1168 |
---|---|
container_issue | 9 |
container_start_page | 1163 |
container_title | Chemical engineering research & design |
container_volume | 88 |
creator | Andreassen, Jens-Petter Flaten, Ellen Marie Beck, Ralf Lewis, Alison Emslie |
description | The discrimination between crystal growth and aggregation is of crucial importance for the control of morphology and particle size in crystallization processes, as they are influenced in very different ways by the industrial processing environment. A collection of resembling solution-grown polycrystalline particles that differ widely in chemical nature, like elemental nickel, calcium and sodium carbonate,
l-glutamic acid and an aromatic amine have been identified to grow by a spherulitic growth mechanism usually only associated with the crystallization of polymers or melts. The particles are not growing by agglomeration of small individual crystals, as often claimed in the literature. The effect of initial supersaturation, temperature and solvent composition on the spherulitic growth of calcium carbonate (vaterite) has been used to demonstrate how spherulites can grow from solution both by central multidirectional growth (in water) and by unidirectional growth followed by low angle branching (in 90
wt% ethylene glycol). The progression of non-crystallographic branching could be monitored as a function of time at intermediate initial supersaturation values, supplying direct visual evidence for spherulitic growth in this system. A reduction in initial supersaturation and temperature resulted in insufficient branching and dumbbell particles, whereas increased levels of supersaturation rapidly produced fully grown spherulites. |
doi_str_mv | 10.1016/j.cherd.2010.01.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849450090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876210000389</els_id><sourcerecordid>849450090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-ba61d7bdf0c0725adbc3fbfef97ebafe6b8c5ee28df8bbf7b8511a92339e99d83</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx_egYK1-Ai97Eb1snST7SA4etPgoCF70HPKY1JR1tybbSv30pg88CgMDw-8_M_yy7ILAhACpbxYT84HBTiikCZAJ0PIoGwGtWcGbmp5kpzEuAIA0JR9l97NujXHwczX4vot57_K4TPlV6wdv8nnov4eP3Hep7CoOwas2N2ETB9W2_mcXOsuOnWojnh_6OHt_fHibPhcvr0-z6d1LYZjgQ6FVTWyjrQMDDa2U1YY57dCJBrVyWGtuKkTKreNau0bzihAlKGMChbCcjbOr_d5l6L9W6Wn56aPBtlUd9qsoeSnKCkBAIq__JUkDoqnKUrCEsj1qQh9jQCeXwX-qsJEE5NanXMidT7n1KYHI5DOlLg8HVDSqdUF1xse_KGU07afbR273HCYva49BRuOxM2h9QDNI2_t_7_wC0hiQuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709754493</pqid></control><display><type>article</type><title>Investigations of spherulitic growth in industrial crystallization</title><source>Elsevier ScienceDirect Journals</source><creator>Andreassen, Jens-Petter ; Flaten, Ellen Marie ; Beck, Ralf ; Lewis, Alison Emslie</creator><creatorcontrib>Andreassen, Jens-Petter ; Flaten, Ellen Marie ; Beck, Ralf ; Lewis, Alison Emslie</creatorcontrib><description>The discrimination between crystal growth and aggregation is of crucial importance for the control of morphology and particle size in crystallization processes, as they are influenced in very different ways by the industrial processing environment. A collection of resembling solution-grown polycrystalline particles that differ widely in chemical nature, like elemental nickel, calcium and sodium carbonate,
l-glutamic acid and an aromatic amine have been identified to grow by a spherulitic growth mechanism usually only associated with the crystallization of polymers or melts. The particles are not growing by agglomeration of small individual crystals, as often claimed in the literature. The effect of initial supersaturation, temperature and solvent composition on the spherulitic growth of calcium carbonate (vaterite) has been used to demonstrate how spherulites can grow from solution both by central multidirectional growth (in water) and by unidirectional growth followed by low angle branching (in 90
wt% ethylene glycol). The progression of non-crystallographic branching could be monitored as a function of time at intermediate initial supersaturation values, supplying direct visual evidence for spherulitic growth in this system. A reduction in initial supersaturation and temperature resulted in insufficient branching and dumbbell particles, whereas increased levels of supersaturation rapidly produced fully grown spherulites.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1016/j.cherd.2010.01.024</identifier><identifier>CODEN: CERDEE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Agglomeration ; Applied sciences ; Calcium carbonate ; Calcium carbonate (CaCO 3) ; Chemical engineering ; Crystallization ; Crystallization, leaching, miscellaneous separations ; Exact sciences and technology ; Nickel ; Polycrystalline ; Reduction ; Sintering, pelletization, granulation ; Sodium carbonate ; Solid-solid systems ; Spherulites ; Spherulitic growth ; Supersaturation ; Vaterite</subject><ispartof>Chemical engineering research & design, 2010-09, Vol.88 (9), p.1163-1168</ispartof><rights>2010 The Institution of Chemical Engineers</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-ba61d7bdf0c0725adbc3fbfef97ebafe6b8c5ee28df8bbf7b8511a92339e99d83</citedby><cites>FETCH-LOGICAL-c398t-ba61d7bdf0c0725adbc3fbfef97ebafe6b8c5ee28df8bbf7b8511a92339e99d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cherd.2010.01.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,777,781,786,787,3537,23911,23912,25121,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23297520$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andreassen, Jens-Petter</creatorcontrib><creatorcontrib>Flaten, Ellen Marie</creatorcontrib><creatorcontrib>Beck, Ralf</creatorcontrib><creatorcontrib>Lewis, Alison Emslie</creatorcontrib><title>Investigations of spherulitic growth in industrial crystallization</title><title>Chemical engineering research & design</title><description>The discrimination between crystal growth and aggregation is of crucial importance for the control of morphology and particle size in crystallization processes, as they are influenced in very different ways by the industrial processing environment. A collection of resembling solution-grown polycrystalline particles that differ widely in chemical nature, like elemental nickel, calcium and sodium carbonate,
l-glutamic acid and an aromatic amine have been identified to grow by a spherulitic growth mechanism usually only associated with the crystallization of polymers or melts. The particles are not growing by agglomeration of small individual crystals, as often claimed in the literature. The effect of initial supersaturation, temperature and solvent composition on the spherulitic growth of calcium carbonate (vaterite) has been used to demonstrate how spherulites can grow from solution both by central multidirectional growth (in water) and by unidirectional growth followed by low angle branching (in 90
wt% ethylene glycol). The progression of non-crystallographic branching could be monitored as a function of time at intermediate initial supersaturation values, supplying direct visual evidence for spherulitic growth in this system. A reduction in initial supersaturation and temperature resulted in insufficient branching and dumbbell particles, whereas increased levels of supersaturation rapidly produced fully grown spherulites.</description><subject>Agglomeration</subject><subject>Applied sciences</subject><subject>Calcium carbonate</subject><subject>Calcium carbonate (CaCO 3)</subject><subject>Chemical engineering</subject><subject>Crystallization</subject><subject>Crystallization, leaching, miscellaneous separations</subject><subject>Exact sciences and technology</subject><subject>Nickel</subject><subject>Polycrystalline</subject><subject>Reduction</subject><subject>Sintering, pelletization, granulation</subject><subject>Sodium carbonate</subject><subject>Solid-solid systems</subject><subject>Spherulites</subject><subject>Spherulitic growth</subject><subject>Supersaturation</subject><subject>Vaterite</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx_egYK1-Ai97Eb1snST7SA4etPgoCF70HPKY1JR1tybbSv30pg88CgMDw-8_M_yy7ILAhACpbxYT84HBTiikCZAJ0PIoGwGtWcGbmp5kpzEuAIA0JR9l97NujXHwczX4vot57_K4TPlV6wdv8nnov4eP3Hep7CoOwas2N2ETB9W2_mcXOsuOnWojnh_6OHt_fHibPhcvr0-z6d1LYZjgQ6FVTWyjrQMDDa2U1YY57dCJBrVyWGtuKkTKreNau0bzihAlKGMChbCcjbOr_d5l6L9W6Wn56aPBtlUd9qsoeSnKCkBAIq__JUkDoqnKUrCEsj1qQh9jQCeXwX-qsJEE5NanXMidT7n1KYHI5DOlLg8HVDSqdUF1xse_KGU07afbR273HCYva49BRuOxM2h9QDNI2_t_7_wC0hiQuw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Andreassen, Jens-Petter</creator><creator>Flaten, Ellen Marie</creator><creator>Beck, Ralf</creator><creator>Lewis, Alison Emslie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20100901</creationdate><title>Investigations of spherulitic growth in industrial crystallization</title><author>Andreassen, Jens-Petter ; Flaten, Ellen Marie ; Beck, Ralf ; Lewis, Alison Emslie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-ba61d7bdf0c0725adbc3fbfef97ebafe6b8c5ee28df8bbf7b8511a92339e99d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agglomeration</topic><topic>Applied sciences</topic><topic>Calcium carbonate</topic><topic>Calcium carbonate (CaCO 3)</topic><topic>Chemical engineering</topic><topic>Crystallization</topic><topic>Crystallization, leaching, miscellaneous separations</topic><topic>Exact sciences and technology</topic><topic>Nickel</topic><topic>Polycrystalline</topic><topic>Reduction</topic><topic>Sintering, pelletization, granulation</topic><topic>Sodium carbonate</topic><topic>Solid-solid systems</topic><topic>Spherulites</topic><topic>Spherulitic growth</topic><topic>Supersaturation</topic><topic>Vaterite</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreassen, Jens-Petter</creatorcontrib><creatorcontrib>Flaten, Ellen Marie</creatorcontrib><creatorcontrib>Beck, Ralf</creatorcontrib><creatorcontrib>Lewis, Alison Emslie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreassen, Jens-Petter</au><au>Flaten, Ellen Marie</au><au>Beck, Ralf</au><au>Lewis, Alison Emslie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigations of spherulitic growth in industrial crystallization</atitle><jtitle>Chemical engineering research & design</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>88</volume><issue>9</issue><spage>1163</spage><epage>1168</epage><pages>1163-1168</pages><issn>0263-8762</issn><coden>CERDEE</coden><abstract>The discrimination between crystal growth and aggregation is of crucial importance for the control of morphology and particle size in crystallization processes, as they are influenced in very different ways by the industrial processing environment. A collection of resembling solution-grown polycrystalline particles that differ widely in chemical nature, like elemental nickel, calcium and sodium carbonate,
l-glutamic acid and an aromatic amine have been identified to grow by a spherulitic growth mechanism usually only associated with the crystallization of polymers or melts. The particles are not growing by agglomeration of small individual crystals, as often claimed in the literature. The effect of initial supersaturation, temperature and solvent composition on the spherulitic growth of calcium carbonate (vaterite) has been used to demonstrate how spherulites can grow from solution both by central multidirectional growth (in water) and by unidirectional growth followed by low angle branching (in 90
wt% ethylene glycol). The progression of non-crystallographic branching could be monitored as a function of time at intermediate initial supersaturation values, supplying direct visual evidence for spherulitic growth in this system. A reduction in initial supersaturation and temperature resulted in insufficient branching and dumbbell particles, whereas increased levels of supersaturation rapidly produced fully grown spherulites.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2010.01.024</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2010-09, Vol.88 (9), p.1163-1168 |
issn | 0263-8762 |
language | eng |
recordid | cdi_proquest_miscellaneous_849450090 |
source | Elsevier ScienceDirect Journals |
subjects | Agglomeration Applied sciences Calcium carbonate Calcium carbonate (CaCO 3) Chemical engineering Crystallization Crystallization, leaching, miscellaneous separations Exact sciences and technology Nickel Polycrystalline Reduction Sintering, pelletization, granulation Sodium carbonate Solid-solid systems Spherulites Spherulitic growth Supersaturation Vaterite |
title | Investigations of spherulitic growth in industrial crystallization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigations%20of%20spherulitic%20growth%20in%20industrial%20crystallization&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Andreassen,%20Jens-Petter&rft.date=2010-09-01&rft.volume=88&rft.issue=9&rft.spage=1163&rft.epage=1168&rft.pages=1163-1168&rft.issn=0263-8762&rft.coden=CERDEE&rft_id=info:doi/10.1016/j.cherd.2010.01.024&rft_dat=%3Cproquest_cross%3E849450090%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709754493&rft_id=info:pmid/&rft_els_id=S0263876210000389&rfr_iscdi=true |