Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves

► Two distinct efficient endomorphisms are discovered to coexist on some GLS elliptic curves. ► 3-dimensional GLV method for fast point multiplication is generalized to these curves. ► Implementation of 3-dimensional GLV method on these curves is 10 percent more efficient than that of 2-dimensinal G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2010-10, Vol.110 (22), p.1003-1006
Hauptverfasser: Zhou, Zhenghua, Hu, Zhi, Xu, Maozhi, Song, Wangan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue 22
container_start_page 1003
container_title Information processing letters
container_volume 110
creator Zhou, Zhenghua
Hu, Zhi
Xu, Maozhi
Song, Wangan
description ► Two distinct efficient endomorphisms are discovered to coexist on some GLS elliptic curves. ► 3-dimensional GLV method for fast point multiplication is generalized to these curves. ► Implementation of 3-dimensional GLV method on these curves is 10 percent more efficient than that of 2-dimensinal GLV method. We discover that two distinct efficient endomorphisms can both exist on some Galbraith–Lin–Scott (GLS) elliptic curves Galbraith et al. (2009) [4]. By using them we generalize the Gallant–Lambert–Vanstone (GLV) method Gallant et al. (2001) [5] for faster point multiplication on these curves to dimension 3, and give some implementation result which shows that our 3-dimensional GLV (3GLV) method runs in 0.897 the time of 2-dimensional GLV (2GLV) method as Galbraith et al. did in Galbraith et al. (2009) [4] for the point multiplication on these curves.
doi_str_mv 10.1016/j.ipl.2010.08.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849448566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020019010002723</els_id><sourcerecordid>849448566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-3a56ebc17d770036b4ee2e498770325bfb8800dac45c6d50d1a0d8b3596e8fde3</originalsourceid><addsrcrecordid>eNp9kMFqFTEUhoMoeG19AHdBEFdzezLJZDK4klKrcKGL2i4NmeQEc5mZjEmm4Nubyy0uXAiBcOD7z598hLxjsGfA5NVxH9Zp30KdQe2BiRdkx1TfNpKx4SXZAbTQABvgNXmT8xEApOD9jvy48T7YgEuhvHFhxiWHuJiJ3h4e6YzlZ3TUx0S9yQUTXWOo5LxNpdYFa0qFaT05zlgj9xSnKawlWGq39IT5krzyZsr49vm-IA9fbr5ff20Od7ffrj8fGsuVLA03ncTRst71PQCXo0BsUQyqjrztRj8qBeCMFZ2VrgPHDDg18m6QqLxDfkE-nveuKf7aMBc9h2zrY8yCcctaiUEI1UlZyff_kMe4pfrjrPuuE0wBhwqxM2RTzDmh12sKs0m_NQN98q2PugrQJ98alK6-a-bD82KTrZl8MosN-W-w5RxqQVu5T2cOq4-ngEnnk3-LLiS0RbsY_tPyB53olNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>755418030</pqid></control><display><type>article</type><title>Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves</title><source>Elsevier ScienceDirect Journals</source><creator>Zhou, Zhenghua ; Hu, Zhi ; Xu, Maozhi ; Song, Wangan</creator><creatorcontrib>Zhou, Zhenghua ; Hu, Zhi ; Xu, Maozhi ; Song, Wangan</creatorcontrib><description>► Two distinct efficient endomorphisms are discovered to coexist on some GLS elliptic curves. ► 3-dimensional GLV method for fast point multiplication is generalized to these curves. ► Implementation of 3-dimensional GLV method on these curves is 10 percent more efficient than that of 2-dimensinal GLV method. We discover that two distinct efficient endomorphisms can both exist on some Galbraith–Lin–Scott (GLS) elliptic curves Galbraith et al. (2009) [4]. By using them we generalize the Gallant–Lambert–Vanstone (GLV) method Gallant et al. (2001) [5] for faster point multiplication on these curves to dimension 3, and give some implementation result which shows that our 3-dimensional GLV (3GLV) method runs in 0.897 the time of 2-dimensional GLV (2GLV) method as Galbraith et al. did in Galbraith et al. (2009) [4] for the point multiplication on these curves.</description><identifier>ISSN: 0020-0190</identifier><identifier>EISSN: 1872-6119</identifier><identifier>DOI: 10.1016/j.ipl.2010.08.014</identifier><identifier>CODEN: IFPLAT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Algebraic geometry ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Cryptography ; Dimensional analysis ; Elliptic curve ; Exact sciences and technology ; GLV method ; Lattice basis ; Mathematical analysis ; Mathematics ; Miscellaneous ; Multiplication ; Number theory ; Point multiplication algorithm ; Sciences and techniques of general use ; Studies ; Theoretical computing</subject><ispartof>Information processing letters, 2010-10, Vol.110 (22), p.1003-1006</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Oct 31, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-3a56ebc17d770036b4ee2e498770325bfb8800dac45c6d50d1a0d8b3596e8fde3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020019010002723$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23307552$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Zhenghua</creatorcontrib><creatorcontrib>Hu, Zhi</creatorcontrib><creatorcontrib>Xu, Maozhi</creatorcontrib><creatorcontrib>Song, Wangan</creatorcontrib><title>Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves</title><title>Information processing letters</title><description>► Two distinct efficient endomorphisms are discovered to coexist on some GLS elliptic curves. ► 3-dimensional GLV method for fast point multiplication is generalized to these curves. ► Implementation of 3-dimensional GLV method on these curves is 10 percent more efficient than that of 2-dimensinal GLV method. We discover that two distinct efficient endomorphisms can both exist on some Galbraith–Lin–Scott (GLS) elliptic curves Galbraith et al. (2009) [4]. By using them we generalize the Gallant–Lambert–Vanstone (GLV) method Gallant et al. (2001) [5] for faster point multiplication on these curves to dimension 3, and give some implementation result which shows that our 3-dimensional GLV (3GLV) method runs in 0.897 the time of 2-dimensional GLV (2GLV) method as Galbraith et al. did in Galbraith et al. (2009) [4] for the point multiplication on these curves.</description><subject>Algebra</subject><subject>Algebraic geometry</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Cryptography</subject><subject>Dimensional analysis</subject><subject>Elliptic curve</subject><subject>Exact sciences and technology</subject><subject>GLV method</subject><subject>Lattice basis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Multiplication</subject><subject>Number theory</subject><subject>Point multiplication algorithm</subject><subject>Sciences and techniques of general use</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>0020-0190</issn><issn>1872-6119</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFqFTEUhoMoeG19AHdBEFdzezLJZDK4klKrcKGL2i4NmeQEc5mZjEmm4Nubyy0uXAiBcOD7z598hLxjsGfA5NVxH9Zp30KdQe2BiRdkx1TfNpKx4SXZAbTQABvgNXmT8xEApOD9jvy48T7YgEuhvHFhxiWHuJiJ3h4e6YzlZ3TUx0S9yQUTXWOo5LxNpdYFa0qFaT05zlgj9xSnKawlWGq39IT5krzyZsr49vm-IA9fbr5ff20Od7ffrj8fGsuVLA03ncTRst71PQCXo0BsUQyqjrztRj8qBeCMFZ2VrgPHDDg18m6QqLxDfkE-nveuKf7aMBc9h2zrY8yCcctaiUEI1UlZyff_kMe4pfrjrPuuE0wBhwqxM2RTzDmh12sKs0m_NQN98q2PugrQJ98alK6-a-bD82KTrZl8MosN-W-w5RxqQVu5T2cOq4-ngEnnk3-LLiS0RbsY_tPyB53olNs</recordid><startdate>20101031</startdate><enddate>20101031</enddate><creator>Zhou, Zhenghua</creator><creator>Hu, Zhi</creator><creator>Xu, Maozhi</creator><creator>Song, Wangan</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101031</creationdate><title>Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves</title><author>Zhou, Zhenghua ; Hu, Zhi ; Xu, Maozhi ; Song, Wangan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-3a56ebc17d770036b4ee2e498770325bfb8800dac45c6d50d1a0d8b3596e8fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Algebraic geometry</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Cryptography</topic><topic>Dimensional analysis</topic><topic>Elliptic curve</topic><topic>Exact sciences and technology</topic><topic>GLV method</topic><topic>Lattice basis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Multiplication</topic><topic>Number theory</topic><topic>Point multiplication algorithm</topic><topic>Sciences and techniques of general use</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhenghua</creatorcontrib><creatorcontrib>Hu, Zhi</creatorcontrib><creatorcontrib>Xu, Maozhi</creatorcontrib><creatorcontrib>Song, Wangan</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhenghua</au><au>Hu, Zhi</au><au>Xu, Maozhi</au><au>Song, Wangan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves</atitle><jtitle>Information processing letters</jtitle><date>2010-10-31</date><risdate>2010</risdate><volume>110</volume><issue>22</issue><spage>1003</spage><epage>1006</epage><pages>1003-1006</pages><issn>0020-0190</issn><eissn>1872-6119</eissn><coden>IFPLAT</coden><abstract>► Two distinct efficient endomorphisms are discovered to coexist on some GLS elliptic curves. ► 3-dimensional GLV method for fast point multiplication is generalized to these curves. ► Implementation of 3-dimensional GLV method on these curves is 10 percent more efficient than that of 2-dimensinal GLV method. We discover that two distinct efficient endomorphisms can both exist on some Galbraith–Lin–Scott (GLS) elliptic curves Galbraith et al. (2009) [4]. By using them we generalize the Gallant–Lambert–Vanstone (GLV) method Gallant et al. (2001) [5] for faster point multiplication on these curves to dimension 3, and give some implementation result which shows that our 3-dimensional GLV (3GLV) method runs in 0.897 the time of 2-dimensional GLV (2GLV) method as Galbraith et al. did in Galbraith et al. (2009) [4] for the point multiplication on these curves.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ipl.2010.08.014</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0190
ispartof Information processing letters, 2010-10, Vol.110 (22), p.1003-1006
issn 0020-0190
1872-6119
language eng
recordid cdi_proquest_miscellaneous_849448566
source Elsevier ScienceDirect Journals
subjects Algebra
Algebraic geometry
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Cryptography
Dimensional analysis
Elliptic curve
Exact sciences and technology
GLV method
Lattice basis
Mathematical analysis
Mathematics
Miscellaneous
Multiplication
Number theory
Point multiplication algorithm
Sciences and techniques of general use
Studies
Theoretical computing
title Efficient 3-dimensional GLV method for faster point multiplication on some GLS elliptic curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%203-dimensional%20GLV%20method%20for%20faster%20point%20multiplication%20on%20some%20GLS%20elliptic%20curves&rft.jtitle=Information%20processing%20letters&rft.au=Zhou,%20Zhenghua&rft.date=2010-10-31&rft.volume=110&rft.issue=22&rft.spage=1003&rft.epage=1006&rft.pages=1003-1006&rft.issn=0020-0190&rft.eissn=1872-6119&rft.coden=IFPLAT&rft_id=info:doi/10.1016/j.ipl.2010.08.014&rft_dat=%3Cproquest_cross%3E849448566%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=755418030&rft_id=info:pmid/&rft_els_id=S0020019010002723&rfr_iscdi=true