Study of monazite under high pressure
Monazite was studied under high pressures of up to 20 GPa and 12 GPa by using synchrotron X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction data suggested that there was a structural distortion at ∼11.5 GPa. The pressure–volume data of the monazite was fitted to a third-order...
Gespeichert in:
Veröffentlicht in: | Solid state communications 2010-10, Vol.150 (37), p.1845-1850 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1850 |
---|---|
container_issue | 37 |
container_start_page | 1845 |
container_title | Solid state communications |
container_volume | 150 |
creator | Huang, Tony Lee, Jiann-Shing Kung, Jennifer Lin, Chih-Ming |
description | Monazite was studied under high pressures of up to 20 GPa and 12 GPa by using synchrotron X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction data suggested that there was a structural distortion at ∼11.5 GPa. The pressure–volume data of the monazite was fitted to a third-order Birch–Murnaghan equation of state and yielded a bulk modulus of 109(1) GPa and a pressure derivative of 6.7(1), in agreement with an empirical formula. |
doi_str_mv | 10.1016/j.ssc.2010.06.042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849445154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038109810003765</els_id><sourcerecordid>849445154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-a3a4921d062127fd6fa264294ce25ca8699df56a430d4350a20614020fd204e3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-9LJ5aJ2maNniSxS9Y8ODeQ0gmbkq3XZNWWH-9WXbx6GkYeN53mIeQWwoFBSru2yJGUzBIO4gCODsjM9rUMme1EOdkBlA2OQXZXJKrGFsAqJuazsjiY5zsPhtcth16_eNHzKbeYsg2_nOT7QLGOAW8JhdOdxFvTnNO1s9P6-Vrvnp_eVs-rnJTVnLMdam5ZNSCYJTVzgqnmeBMcoOsMroRUlpXCc1LsLysQDMQlAMDZxlwLOfk7li7C8PXhHFUWx8Ndp3ucZiiarjkvKIVTyQ9kiYMMQZ0ahf8Voe9oqAOQlSrkhB1EKJAqCQkZRandh2N7lzQvfHxL8hKRpOrJnEPRw7Tp98eg4rGY2_Q-oBmVHbw_1z5BVFUc1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849445154</pqid></control><display><type>article</type><title>Study of monazite under high pressure</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Tony ; Lee, Jiann-Shing ; Kung, Jennifer ; Lin, Chih-Ming</creator><creatorcontrib>Huang, Tony ; Lee, Jiann-Shing ; Kung, Jennifer ; Lin, Chih-Ming</creatorcontrib><description>Monazite was studied under high pressures of up to 20 GPa and 12 GPa by using synchrotron X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction data suggested that there was a structural distortion at ∼11.5 GPa. The pressure–volume data of the monazite was fitted to a third-order Birch–Murnaghan equation of state and yielded a bulk modulus of 109(1) GPa and a pressure derivative of 6.7(1), in agreement with an empirical formula.</description><identifier>ISSN: 0038-1098</identifier><identifier>EISSN: 1879-2766</identifier><identifier>DOI: 10.1016/j.ssc.2010.06.042</identifier><identifier>CODEN: SSCOA4</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bulk modulus ; C. Structural distortion ; Condensed matter: structure, mechanical and thermal properties ; D. Phonons in crystal lattices ; Derivatives ; Diffraction ; Distortion ; E. X-ray diffraction ; Empirical equations ; Exact sciences and technology ; Inorganic compounds ; Lattice dynamics ; Monazite ; Phonon states and bands, normal modes, and phonon dispersion ; Phonons and vibrations in crystal lattices ; Physics ; Salts ; Structure of solids and liquids; crystallography ; Structure of specific crystalline solids ; Synchrotrons ; X-rays</subject><ispartof>Solid state communications, 2010-10, Vol.150 (37), p.1845-1850</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-a3a4921d062127fd6fa264294ce25ca8699df56a430d4350a20614020fd204e3</citedby><cites>FETCH-LOGICAL-c359t-a3a4921d062127fd6fa264294ce25ca8699df56a430d4350a20614020fd204e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ssc.2010.06.042$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23217668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Tony</creatorcontrib><creatorcontrib>Lee, Jiann-Shing</creatorcontrib><creatorcontrib>Kung, Jennifer</creatorcontrib><creatorcontrib>Lin, Chih-Ming</creatorcontrib><title>Study of monazite under high pressure</title><title>Solid state communications</title><description>Monazite was studied under high pressures of up to 20 GPa and 12 GPa by using synchrotron X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction data suggested that there was a structural distortion at ∼11.5 GPa. The pressure–volume data of the monazite was fitted to a third-order Birch–Murnaghan equation of state and yielded a bulk modulus of 109(1) GPa and a pressure derivative of 6.7(1), in agreement with an empirical formula.</description><subject>Bulk modulus</subject><subject>C. Structural distortion</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>D. Phonons in crystal lattices</subject><subject>Derivatives</subject><subject>Diffraction</subject><subject>Distortion</subject><subject>E. X-ray diffraction</subject><subject>Empirical equations</subject><subject>Exact sciences and technology</subject><subject>Inorganic compounds</subject><subject>Lattice dynamics</subject><subject>Monazite</subject><subject>Phonon states and bands, normal modes, and phonon dispersion</subject><subject>Phonons and vibrations in crystal lattices</subject><subject>Physics</subject><subject>Salts</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Structure of specific crystalline solids</subject><subject>Synchrotrons</subject><subject>X-rays</subject><issn>0038-1098</issn><issn>1879-2766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-9LJ5aJ2maNniSxS9Y8ODeQ0gmbkq3XZNWWH-9WXbx6GkYeN53mIeQWwoFBSru2yJGUzBIO4gCODsjM9rUMme1EOdkBlA2OQXZXJKrGFsAqJuazsjiY5zsPhtcth16_eNHzKbeYsg2_nOT7QLGOAW8JhdOdxFvTnNO1s9P6-Vrvnp_eVs-rnJTVnLMdam5ZNSCYJTVzgqnmeBMcoOsMroRUlpXCc1LsLysQDMQlAMDZxlwLOfk7li7C8PXhHFUWx8Ndp3ucZiiarjkvKIVTyQ9kiYMMQZ0ahf8Voe9oqAOQlSrkhB1EKJAqCQkZRandh2N7lzQvfHxL8hKRpOrJnEPRw7Tp98eg4rGY2_Q-oBmVHbw_1z5BVFUc1c</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Huang, Tony</creator><creator>Lee, Jiann-Shing</creator><creator>Kung, Jennifer</creator><creator>Lin, Chih-Ming</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101001</creationdate><title>Study of monazite under high pressure</title><author>Huang, Tony ; Lee, Jiann-Shing ; Kung, Jennifer ; Lin, Chih-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-a3a4921d062127fd6fa264294ce25ca8699df56a430d4350a20614020fd204e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bulk modulus</topic><topic>C. Structural distortion</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>D. Phonons in crystal lattices</topic><topic>Derivatives</topic><topic>Diffraction</topic><topic>Distortion</topic><topic>E. X-ray diffraction</topic><topic>Empirical equations</topic><topic>Exact sciences and technology</topic><topic>Inorganic compounds</topic><topic>Lattice dynamics</topic><topic>Monazite</topic><topic>Phonon states and bands, normal modes, and phonon dispersion</topic><topic>Phonons and vibrations in crystal lattices</topic><topic>Physics</topic><topic>Salts</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Structure of specific crystalline solids</topic><topic>Synchrotrons</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Tony</creatorcontrib><creatorcontrib>Lee, Jiann-Shing</creatorcontrib><creatorcontrib>Kung, Jennifer</creatorcontrib><creatorcontrib>Lin, Chih-Ming</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Tony</au><au>Lee, Jiann-Shing</au><au>Kung, Jennifer</au><au>Lin, Chih-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of monazite under high pressure</atitle><jtitle>Solid state communications</jtitle><date>2010-10-01</date><risdate>2010</risdate><volume>150</volume><issue>37</issue><spage>1845</spage><epage>1850</epage><pages>1845-1850</pages><issn>0038-1098</issn><eissn>1879-2766</eissn><coden>SSCOA4</coden><abstract>Monazite was studied under high pressures of up to 20 GPa and 12 GPa by using synchrotron X-ray diffraction and Raman spectroscopy, respectively. X-ray diffraction data suggested that there was a structural distortion at ∼11.5 GPa. The pressure–volume data of the monazite was fitted to a third-order Birch–Murnaghan equation of state and yielded a bulk modulus of 109(1) GPa and a pressure derivative of 6.7(1), in agreement with an empirical formula.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ssc.2010.06.042</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-1098 |
ispartof | Solid state communications, 2010-10, Vol.150 (37), p.1845-1850 |
issn | 0038-1098 1879-2766 |
language | eng |
recordid | cdi_proquest_miscellaneous_849445154 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bulk modulus C. Structural distortion Condensed matter: structure, mechanical and thermal properties D. Phonons in crystal lattices Derivatives Diffraction Distortion E. X-ray diffraction Empirical equations Exact sciences and technology Inorganic compounds Lattice dynamics Monazite Phonon states and bands, normal modes, and phonon dispersion Phonons and vibrations in crystal lattices Physics Salts Structure of solids and liquids crystallography Structure of specific crystalline solids Synchrotrons X-rays |
title | Study of monazite under high pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20monazite%20under%20high%20pressure&rft.jtitle=Solid%20state%20communications&rft.au=Huang,%20Tony&rft.date=2010-10-01&rft.volume=150&rft.issue=37&rft.spage=1845&rft.epage=1850&rft.pages=1845-1850&rft.issn=0038-1098&rft.eissn=1879-2766&rft.coden=SSCOA4&rft_id=info:doi/10.1016/j.ssc.2010.06.042&rft_dat=%3Cproquest_cross%3E849445154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849445154&rft_id=info:pmid/&rft_els_id=S0038109810003765&rfr_iscdi=true |