Pseudo-similar points in ordered sets
Two points l and h in an ordered set P are called pseudo-similar iff P ∖ { l } is isomorphic to P ∖ { h } and there is no automorphism of P that maps l to h . This paper provides a characterization of ordered sets with at least two pseudo-similar points. Special attention is given to ordered sets wi...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2010-11, Vol.310 (21), p.2815-2823 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2823 |
---|---|
container_issue | 21 |
container_start_page | 2815 |
container_title | Discrete mathematics |
container_volume | 310 |
creator | Schroeder, Bernd SW |
description | Two points
l
and
h
in an ordered set
P
are called pseudo-similar iff
P
∖
{
l
}
is isomorphic to
P
∖
{
h
}
and there is no automorphism of
P
that maps
l
to
h
. This paper provides a characterization of ordered sets with at least two pseudo-similar points. Special attention is given to ordered sets with pseudo-similar points
l
and
h
so that one of the points is minimal and the other is maximal. These sets will play a key role in the reconstruction of the rank of the removed element in a non-extremal card. |
doi_str_mv | 10.1016/j.disc.2010.06.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849438148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X1000227X</els_id><sourcerecordid>849438148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4a0462c1fe46b09c6850038691a5954dce85c81d9bbe8bceaca74cf8920ca7a03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-9LJ5aJ2maTcGLiF-woAeFvYU0mUKWbrtmuoL_3pRdPHqaD953hvdh7JpDwYGr203hA7lCQFqAKkCIEzbjeilypfn6lM0AuMhLVa3P2QXRBtKsSj1ji3fCvR9yCtvQ2ZjthtCPlIU-G6LHiD4jHOmSnbW2I7w61jn7fHr8eHjJV2_Prw_3q9xJUGMuLUglHG9RqgZqp3QFUGpVc1vVlfQOdeU093XToG4cWmeX0rW6FpA6C-Wc3Rzu7uLwtUcazTbFwq6zPQ57MlrWstRc6qQUB6WLA1HE1uxi2Nr4YziYCYnZmAmJmZAYUCYhSabF8bwlZ7s22t4F-nOKUnChy0l3d9BhyvodMBpyAXuHPkR0o_FD-O_NL4_PdiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849438148</pqid></control><display><type>article</type><title>Pseudo-similar points in ordered sets</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Schroeder, Bernd SW</creator><creatorcontrib>Schroeder, Bernd SW</creatorcontrib><description>Two points
l
and
h
in an ordered set
P
are called pseudo-similar iff
P
∖
{
l
}
is isomorphic to
P
∖
{
h
}
and there is no automorphism of
P
that maps
l
to
h
. This paper provides a characterization of ordered sets with at least two pseudo-similar points. Special attention is given to ordered sets with pseudo-similar points
l
and
h
so that one of the points is minimal and the other is maximal. These sets will play a key role in the reconstruction of the rank of the removed element in a non-extremal card.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2010.06.022</identifier><identifier>CODEN: DSMHA4</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algebra ; Automorphisms ; Cards ; Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Isomorphic cards ; Mathematical analysis ; Mathematics ; Maximal card ; Minimal card ; Order, lattices, ordered algebraic structures ; Ordered set ; Pseudo-similar points ; Reconstruction ; Sciences and techniques of general use ; Set reconstruction</subject><ispartof>Discrete mathematics, 2010-11, Vol.310 (21), p.2815-2823</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4a0462c1fe46b09c6850038691a5954dce85c81d9bbe8bceaca74cf8920ca7a03</citedby><cites>FETCH-LOGICAL-c406t-4a0462c1fe46b09c6850038691a5954dce85c81d9bbe8bceaca74cf8920ca7a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2010.06.022$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23212832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Bernd SW</creatorcontrib><title>Pseudo-similar points in ordered sets</title><title>Discrete mathematics</title><description>Two points
l
and
h
in an ordered set
P
are called pseudo-similar iff
P
∖
{
l
}
is isomorphic to
P
∖
{
h
}
and there is no automorphism of
P
that maps
l
to
h
. This paper provides a characterization of ordered sets with at least two pseudo-similar points. Special attention is given to ordered sets with pseudo-similar points
l
and
h
so that one of the points is minimal and the other is maximal. These sets will play a key role in the reconstruction of the rank of the removed element in a non-extremal card.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Cards</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Isomorphic cards</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximal card</subject><subject>Minimal card</subject><subject>Order, lattices, ordered algebraic structures</subject><subject>Ordered set</subject><subject>Pseudo-similar points</subject><subject>Reconstruction</subject><subject>Sciences and techniques of general use</subject><subject>Set reconstruction</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-9LJ5aJ2maTcGLiF-woAeFvYU0mUKWbrtmuoL_3pRdPHqaD953hvdh7JpDwYGr203hA7lCQFqAKkCIEzbjeilypfn6lM0AuMhLVa3P2QXRBtKsSj1ji3fCvR9yCtvQ2ZjthtCPlIU-G6LHiD4jHOmSnbW2I7w61jn7fHr8eHjJV2_Prw_3q9xJUGMuLUglHG9RqgZqp3QFUGpVc1vVlfQOdeU093XToG4cWmeX0rW6FpA6C-Wc3Rzu7uLwtUcazTbFwq6zPQ57MlrWstRc6qQUB6WLA1HE1uxi2Nr4YziYCYnZmAmJmZAYUCYhSabF8bwlZ7s22t4F-nOKUnChy0l3d9BhyvodMBpyAXuHPkR0o_FD-O_NL4_PdiI</recordid><startdate>20101106</startdate><enddate>20101106</enddate><creator>Schroeder, Bernd SW</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101106</creationdate><title>Pseudo-similar points in ordered sets</title><author>Schroeder, Bernd SW</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4a0462c1fe46b09c6850038691a5954dce85c81d9bbe8bceaca74cf8920ca7a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Cards</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Isomorphic cards</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximal card</topic><topic>Minimal card</topic><topic>Order, lattices, ordered algebraic structures</topic><topic>Ordered set</topic><topic>Pseudo-similar points</topic><topic>Reconstruction</topic><topic>Sciences and techniques of general use</topic><topic>Set reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Bernd SW</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Bernd SW</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudo-similar points in ordered sets</atitle><jtitle>Discrete mathematics</jtitle><date>2010-11-06</date><risdate>2010</risdate><volume>310</volume><issue>21</issue><spage>2815</spage><epage>2823</epage><pages>2815-2823</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><coden>DSMHA4</coden><abstract>Two points
l
and
h
in an ordered set
P
are called pseudo-similar iff
P
∖
{
l
}
is isomorphic to
P
∖
{
h
}
and there is no automorphism of
P
that maps
l
to
h
. This paper provides a characterization of ordered sets with at least two pseudo-similar points. Special attention is given to ordered sets with pseudo-similar points
l
and
h
so that one of the points is minimal and the other is maximal. These sets will play a key role in the reconstruction of the rank of the removed element in a non-extremal card.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2010.06.022</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2010-11, Vol.310 (21), p.2815-2823 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_849438148 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algebra Automorphisms Cards Combinatorics Combinatorics. Ordered structures Exact sciences and technology Isomorphic cards Mathematical analysis Mathematics Maximal card Minimal card Order, lattices, ordered algebraic structures Ordered set Pseudo-similar points Reconstruction Sciences and techniques of general use Set reconstruction |
title | Pseudo-similar points in ordered sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudo-similar%20points%20in%20ordered%20sets&rft.jtitle=Discrete%20mathematics&rft.au=Schroeder,%20Bernd%20SW&rft.date=2010-11-06&rft.volume=310&rft.issue=21&rft.spage=2815&rft.epage=2823&rft.pages=2815-2823&rft.issn=0012-365X&rft.eissn=1872-681X&rft.coden=DSMHA4&rft_id=info:doi/10.1016/j.disc.2010.06.022&rft_dat=%3Cproquest_cross%3E849438148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=849438148&rft_id=info:pmid/&rft_els_id=S0012365X1000227X&rfr_iscdi=true |