Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal

The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2010-10, Vol.77A (10), p.925-932
Hauptverfasser: Brown, M. Rowan, Summers, Huw D., Rees, Paul, Chappell, Sally C., Silvestre, Oscar F., Khan, Imtiaz A., Smith, Paul J., Errington, Rachel J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 10
container_start_page 925
container_title Cytometry. Part A
container_volume 77A
creator Brown, M. Rowan
Summers, Huw D.
Rees, Paul
Chappell, Sally C.
Silvestre, Oscar F.
Khan, Imtiaz A.
Smith, Paul J.
Errington, Rachel J.
description The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry
doi_str_mv 10.1002/cyto.a.20936
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849431535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017982050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</originalsourceid><addsrcrecordid>eNp90b1OwzAUBWALgWgpbMzIGwy03NiOk4yo4k-q1KUMTJHj3JSgJG5jB5SNR-AZeRJcWjoiWfIdPh9bPoScBzAJANiN7p2ZqAmDhMsDMgzCkI1FwuFwPzM2ICfWvgHwEDg7JgMWsASElENSz0yz_P78ctjW1JU1UottiZaqRlW9LS01BV13qnFdTXPjKDba5JhTjVVladbTHLVp3k3VudI0G-1ekarOmaLqTItW-xM-tVz6wFNyVKjK4tluH5Hn-7vF9HE8mz88TW9nYy0glOOIxxq0RPQrA4EQC8wk5Mh5UGAkQca5yGIIQWZCo5-zCFUuElFoDGXER-Rym7tqzbpD69K6tJsXqwZNZ9PYUx6EPPTy6l8ZQBAlMfNXeXq9pbo11rZYpKu2rFXbe5Ruqkg3VaQq_a3C84tdcpfVmO_x3997wLfgo6yw_zcsnb4s5tvYH0QemIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017982050</pqid></control><display><type>article</type><title>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Brown, M. Rowan ; Summers, Huw D. ; Rees, Paul ; Chappell, Sally C. ; Silvestre, Oscar F. ; Khan, Imtiaz A. ; Smith, Paul J. ; Errington, Rachel J.</creator><creatorcontrib>Brown, M. Rowan ; Summers, Huw D. ; Rees, Paul ; Chappell, Sally C. ; Silvestre, Oscar F. ; Khan, Imtiaz A. ; Smith, Paul J. ; Errington, Rachel J.</creatorcontrib><description>The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., &gt;80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>ISSN: 1552-4930</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.20936</identifier><identifier>PMID: 21290466</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Cell Line, Tumor ; Cell number ; cell‐cycle ; Flow cytometry ; Flow Cytometry - methods ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Heredity ; Humans ; in‐silico modeling ; Mathematical models ; nano‐toxicity ; Osteosarcoma cells ; proliferation ; quantum dot ; Quantum Dots ; Stochasticity ; systems biology ; Tumors</subject><ispartof>Cytometry. Part A, 2010-10, Vol.77A (10), p.925-932</ispartof><rights>Copyright © 2010 International Society for Advancement of Cytometry</rights><rights>Copyright © 2010 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</citedby><cites>FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.20936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.20936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21290466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, M. Rowan</creatorcontrib><creatorcontrib>Summers, Huw D.</creatorcontrib><creatorcontrib>Rees, Paul</creatorcontrib><creatorcontrib>Chappell, Sally C.</creatorcontrib><creatorcontrib>Silvestre, Oscar F.</creatorcontrib><creatorcontrib>Khan, Imtiaz A.</creatorcontrib><creatorcontrib>Smith, Paul J.</creatorcontrib><creatorcontrib>Errington, Rachel J.</creatorcontrib><title>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., &gt;80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry</description><subject>Cell Line, Tumor</subject><subject>Cell number</subject><subject>cell‐cycle</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Heredity</subject><subject>Humans</subject><subject>in‐silico modeling</subject><subject>Mathematical models</subject><subject>nano‐toxicity</subject><subject>Osteosarcoma cells</subject><subject>proliferation</subject><subject>quantum dot</subject><subject>Quantum Dots</subject><subject>Stochasticity</subject><subject>systems biology</subject><subject>Tumors</subject><issn>1552-4922</issn><issn>1552-4930</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90b1OwzAUBWALgWgpbMzIGwy03NiOk4yo4k-q1KUMTJHj3JSgJG5jB5SNR-AZeRJcWjoiWfIdPh9bPoScBzAJANiN7p2ZqAmDhMsDMgzCkI1FwuFwPzM2ICfWvgHwEDg7JgMWsASElENSz0yz_P78ctjW1JU1UottiZaqRlW9LS01BV13qnFdTXPjKDba5JhTjVVladbTHLVp3k3VudI0G-1ekarOmaLqTItW-xM-tVz6wFNyVKjK4tluH5Hn-7vF9HE8mz88TW9nYy0glOOIxxq0RPQrA4EQC8wk5Mh5UGAkQca5yGIIQWZCo5-zCFUuElFoDGXER-Rym7tqzbpD69K6tJsXqwZNZ9PYUx6EPPTy6l8ZQBAlMfNXeXq9pbo11rZYpKu2rFXbe5Ruqkg3VaQq_a3C84tdcpfVmO_x3997wLfgo6yw_zcsnb4s5tvYH0QemIM</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Brown, M. Rowan</creator><creator>Summers, Huw D.</creator><creator>Rees, Paul</creator><creator>Chappell, Sally C.</creator><creator>Silvestre, Oscar F.</creator><creator>Khan, Imtiaz A.</creator><creator>Smith, Paul J.</creator><creator>Errington, Rachel J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</title><author>Brown, M. Rowan ; Summers, Huw D. ; Rees, Paul ; Chappell, Sally C. ; Silvestre, Oscar F. ; Khan, Imtiaz A. ; Smith, Paul J. ; Errington, Rachel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cell Line, Tumor</topic><topic>Cell number</topic><topic>cell‐cycle</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Heredity</topic><topic>Humans</topic><topic>in‐silico modeling</topic><topic>Mathematical models</topic><topic>nano‐toxicity</topic><topic>Osteosarcoma cells</topic><topic>proliferation</topic><topic>quantum dot</topic><topic>Quantum Dots</topic><topic>Stochasticity</topic><topic>systems biology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, M. Rowan</creatorcontrib><creatorcontrib>Summers, Huw D.</creatorcontrib><creatorcontrib>Rees, Paul</creatorcontrib><creatorcontrib>Chappell, Sally C.</creatorcontrib><creatorcontrib>Silvestre, Oscar F.</creatorcontrib><creatorcontrib>Khan, Imtiaz A.</creatorcontrib><creatorcontrib>Smith, Paul J.</creatorcontrib><creatorcontrib>Errington, Rachel J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, M. Rowan</au><au>Summers, Huw D.</au><au>Rees, Paul</au><au>Chappell, Sally C.</au><au>Silvestre, Oscar F.</au><au>Khan, Imtiaz A.</au><au>Smith, Paul J.</au><au>Errington, Rachel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2010-10</date><risdate>2010</risdate><volume>77A</volume><issue>10</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>1552-4922</issn><issn>1552-4930</issn><eissn>1552-4930</eissn><abstract>The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., &gt;80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21290466</pmid><doi>10.1002/cyto.a.20936</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4922
ispartof Cytometry. Part A, 2010-10, Vol.77A (10), p.925-932
issn 1552-4922
1552-4930
1552-4930
language eng
recordid cdi_proquest_miscellaneous_849431535
source Wiley-Blackwell Journals; MEDLINE; Wiley Free Archive; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Cell Line, Tumor
Cell number
cell‐cycle
Flow cytometry
Flow Cytometry - methods
Fluorescence
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Heredity
Humans
in‐silico modeling
Mathematical models
nano‐toxicity
Osteosarcoma cells
proliferation
quantum dot
Quantum Dots
Stochasticity
systems biology
Tumors
title Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%E2%80%90term%20time%20series%20analysis%20of%20quantum%20dot%20encoded%20cells%20by%20deconvolution%20of%20the%20autofluorescence%20signal&rft.jtitle=Cytometry.%20Part%20A&rft.au=Brown,%20M.%20Rowan&rft.date=2010-10&rft.volume=77A&rft.issue=10&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.20936&rft_dat=%3Cproquest_cross%3E1017982050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017982050&rft_id=info:pmid/21290466&rfr_iscdi=true