Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal
The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjun...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part A 2010-10, Vol.77A (10), p.925-932 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 10 |
container_start_page | 925 |
container_title | Cytometry. Part A |
container_volume | 77A |
creator | Brown, M. Rowan Summers, Huw D. Rees, Paul Chappell, Sally C. Silvestre, Oscar F. Khan, Imtiaz A. Smith, Paul J. Errington, Rachel J. |
description | The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry |
doi_str_mv | 10.1002/cyto.a.20936 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_849431535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017982050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</originalsourceid><addsrcrecordid>eNp90b1OwzAUBWALgWgpbMzIGwy03NiOk4yo4k-q1KUMTJHj3JSgJG5jB5SNR-AZeRJcWjoiWfIdPh9bPoScBzAJANiN7p2ZqAmDhMsDMgzCkI1FwuFwPzM2ICfWvgHwEDg7JgMWsASElENSz0yz_P78ctjW1JU1UottiZaqRlW9LS01BV13qnFdTXPjKDba5JhTjVVladbTHLVp3k3VudI0G-1ekarOmaLqTItW-xM-tVz6wFNyVKjK4tluH5Hn-7vF9HE8mz88TW9nYy0glOOIxxq0RPQrA4EQC8wk5Mh5UGAkQca5yGIIQWZCo5-zCFUuElFoDGXER-Rym7tqzbpD69K6tJsXqwZNZ9PYUx6EPPTy6l8ZQBAlMfNXeXq9pbo11rZYpKu2rFXbe5Ruqkg3VaQq_a3C84tdcpfVmO_x3997wLfgo6yw_zcsnb4s5tvYH0QemIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017982050</pqid></control><display><type>article</type><title>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><source>Wiley Free Archive</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Brown, M. Rowan ; Summers, Huw D. ; Rees, Paul ; Chappell, Sally C. ; Silvestre, Oscar F. ; Khan, Imtiaz A. ; Smith, Paul J. ; Errington, Rachel J.</creator><creatorcontrib>Brown, M. Rowan ; Summers, Huw D. ; Rees, Paul ; Chappell, Sally C. ; Silvestre, Oscar F. ; Khan, Imtiaz A. ; Smith, Paul J. ; Errington, Rachel J.</creatorcontrib><description>The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>ISSN: 1552-4930</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.20936</identifier><identifier>PMID: 21290466</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Cell Line, Tumor ; Cell number ; cell‐cycle ; Flow cytometry ; Flow Cytometry - methods ; Fluorescence ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Heredity ; Humans ; in‐silico modeling ; Mathematical models ; nano‐toxicity ; Osteosarcoma cells ; proliferation ; quantum dot ; Quantum Dots ; Stochasticity ; systems biology ; Tumors</subject><ispartof>Cytometry. Part A, 2010-10, Vol.77A (10), p.925-932</ispartof><rights>Copyright © 2010 International Society for Advancement of Cytometry</rights><rights>Copyright © 2010 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</citedby><cites>FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.20936$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.20936$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21290466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, M. Rowan</creatorcontrib><creatorcontrib>Summers, Huw D.</creatorcontrib><creatorcontrib>Rees, Paul</creatorcontrib><creatorcontrib>Chappell, Sally C.</creatorcontrib><creatorcontrib>Silvestre, Oscar F.</creatorcontrib><creatorcontrib>Khan, Imtiaz A.</creatorcontrib><creatorcontrib>Smith, Paul J.</creatorcontrib><creatorcontrib>Errington, Rachel J.</creatorcontrib><title>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry</description><subject>Cell Line, Tumor</subject><subject>Cell number</subject><subject>cell‐cycle</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Heredity</subject><subject>Humans</subject><subject>in‐silico modeling</subject><subject>Mathematical models</subject><subject>nano‐toxicity</subject><subject>Osteosarcoma cells</subject><subject>proliferation</subject><subject>quantum dot</subject><subject>Quantum Dots</subject><subject>Stochasticity</subject><subject>systems biology</subject><subject>Tumors</subject><issn>1552-4922</issn><issn>1552-4930</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90b1OwzAUBWALgWgpbMzIGwy03NiOk4yo4k-q1KUMTJHj3JSgJG5jB5SNR-AZeRJcWjoiWfIdPh9bPoScBzAJANiN7p2ZqAmDhMsDMgzCkI1FwuFwPzM2ICfWvgHwEDg7JgMWsASElENSz0yz_P78ctjW1JU1UottiZaqRlW9LS01BV13qnFdTXPjKDba5JhTjVVladbTHLVp3k3VudI0G-1ekarOmaLqTItW-xM-tVz6wFNyVKjK4tluH5Hn-7vF9HE8mz88TW9nYy0glOOIxxq0RPQrA4EQC8wk5Mh5UGAkQca5yGIIQWZCo5-zCFUuElFoDGXER-Rym7tqzbpD69K6tJsXqwZNZ9PYUx6EPPTy6l8ZQBAlMfNXeXq9pbo11rZYpKu2rFXbe5Ruqkg3VaQq_a3C84tdcpfVmO_x3997wLfgo6yw_zcsnb4s5tvYH0QemIM</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Brown, M. Rowan</creator><creator>Summers, Huw D.</creator><creator>Rees, Paul</creator><creator>Chappell, Sally C.</creator><creator>Silvestre, Oscar F.</creator><creator>Khan, Imtiaz A.</creator><creator>Smith, Paul J.</creator><creator>Errington, Rachel J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201010</creationdate><title>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</title><author>Brown, M. Rowan ; Summers, Huw D. ; Rees, Paul ; Chappell, Sally C. ; Silvestre, Oscar F. ; Khan, Imtiaz A. ; Smith, Paul J. ; Errington, Rachel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4056-738c0c6ee6eeb04e084eb60de331fe76068d4b80506b4ced4bb7ead494fce5673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cell Line, Tumor</topic><topic>Cell number</topic><topic>cell‐cycle</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Heredity</topic><topic>Humans</topic><topic>in‐silico modeling</topic><topic>Mathematical models</topic><topic>nano‐toxicity</topic><topic>Osteosarcoma cells</topic><topic>proliferation</topic><topic>quantum dot</topic><topic>Quantum Dots</topic><topic>Stochasticity</topic><topic>systems biology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, M. Rowan</creatorcontrib><creatorcontrib>Summers, Huw D.</creatorcontrib><creatorcontrib>Rees, Paul</creatorcontrib><creatorcontrib>Chappell, Sally C.</creatorcontrib><creatorcontrib>Silvestre, Oscar F.</creatorcontrib><creatorcontrib>Khan, Imtiaz A.</creatorcontrib><creatorcontrib>Smith, Paul J.</creatorcontrib><creatorcontrib>Errington, Rachel J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, M. Rowan</au><au>Summers, Huw D.</au><au>Rees, Paul</au><au>Chappell, Sally C.</au><au>Silvestre, Oscar F.</au><au>Khan, Imtiaz A.</au><au>Smith, Paul J.</au><au>Errington, Rachel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2010-10</date><risdate>2010</risdate><volume>77A</volume><issue>10</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>1552-4922</issn><issn>1552-4930</issn><eissn>1552-4930</eissn><abstract>The monitoring of cells labeled with quantum dot endosome‐targeted markers in a highly proliferative population provides a quantitative approach to determine the redistribution of quantum dot signal as cells divide over generations. We demonstrate that the use of time‐series flow cytometry in conjunction with a stochastic numerical simulation to provide a means to describe the proliferative features and quantum dot inheritance over multiple generations of a human tumor population. However, the core challenge for long‐term tracking where the original quantum dot fluorescence signal over time becomes redistributed across a greater cell number requires accountability of background fluorescence in the simulation. By including an autofluorescence component, we are able to continue even when this signal predominates (i.e., >80% of the total signal) and obtain valid readouts of the proliferative system. We determine the robustness of the technique by tracking a human osteosarcoma cell population over 8 days and discuss the accuracy and certainty of the model parameters obtained. This systems biology approach provides insight into both cell heterogeneity and division dynamics within the population and furthermore informs on the lineage history of its members. © 2010 International Society for Advancement of Cytometry</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21290466</pmid><doi>10.1002/cyto.a.20936</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4922 |
ispartof | Cytometry. Part A, 2010-10, Vol.77A (10), p.925-932 |
issn | 1552-4922 1552-4930 1552-4930 |
language | eng |
recordid | cdi_proquest_miscellaneous_849431535 |
source | Wiley-Blackwell Journals; MEDLINE; Wiley Free Archive; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Cell Line, Tumor Cell number cell‐cycle Flow cytometry Flow Cytometry - methods Fluorescence Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Heredity Humans in‐silico modeling Mathematical models nano‐toxicity Osteosarcoma cells proliferation quantum dot Quantum Dots Stochasticity systems biology Tumors |
title | Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%E2%80%90term%20time%20series%20analysis%20of%20quantum%20dot%20encoded%20cells%20by%20deconvolution%20of%20the%20autofluorescence%20signal&rft.jtitle=Cytometry.%20Part%20A&rft.au=Brown,%20M.%20Rowan&rft.date=2010-10&rft.volume=77A&rft.issue=10&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.20936&rft_dat=%3Cproquest_cross%3E1017982050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017982050&rft_id=info:pmid/21290466&rfr_iscdi=true |