Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM

The electrochemically triggered dissolution of noncontinuous polyelectrolyte assemblies presenting distinct nanomorphologies and its tuning by chemical cross-linking were monitored locally, in situ, by electrochemical atomic force microscopy. Poly-l-lysine and hyaluronic acid deposited layer-by-laye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2010-12, Vol.2 (12), p.3525-3531
Hauptverfasser: Guillaume-Gentil, Orane, Abbruzzese, Daniele, Thomasson, Elsa, Vörös, Janos, Zambelli, Tomaso
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3531
container_issue 12
container_start_page 3525
container_title ACS applied materials & interfaces
container_volume 2
creator Guillaume-Gentil, Orane
Abbruzzese, Daniele
Thomasson, Elsa
Vörös, Janos
Zambelli, Tomaso
description The electrochemically triggered dissolution of noncontinuous polyelectrolyte assemblies presenting distinct nanomorphologies and its tuning by chemical cross-linking were monitored locally, in situ, by electrochemical atomic force microscopy. Poly-l-lysine and hyaluronic acid deposited layer-by-layer on indium tin oxide electrodes at specific experimental conditions formed well-defined nanostructures whose morphologies could be easily and precisely followed along the dissolution process. In addition to shrinkage of polyelectrolyte nanodroplets, ecAFM images revealed the faster dissolution of coalesced structures compared to droplet-like complexes, and the readsorption of dissolved polyelectrolytes onto slower dissolving neighboring structures. Covalently cross-linked PLL/HA assemblies dissolved only partially, and exhibited slower dissolution rates compared to native multilayers, with a clear dependence on the cross-link density. Tuning the electrochemical dissolution of polyelectrolyte multilayers through chemical cross-linking opens new prospects for future biomedical applications, such as the development of advanced drug or gene delivery platforms allowing for tightly controlled releases of different compounds at specific rates.
doi_str_mv 10.1021/am1007062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_848821910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848821910</sourcerecordid><originalsourceid>FETCH-LOGICAL-a314t-e04b5f96d114995e5ad14d818baae38d915d8934989bc5bfc060508f40c7bf183</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EoqVw4AWQLwhxKNiJk9rcqtJCpfIjtT1HjrMBV45d4lgib09QS0-cdqT9drQzCF1SckdJRO9lRQkZkTQ6Qn0qGBvyKImOD5qxHjrzfkNIGkckOUW9iJJ01Mk--p58QqWVNKbFq2BlbgBPDaimdmq_wY_ae2dCo53FrsSvzipnG22DCx6_O9PC7sC0DeCx91DlRoN_wGOL5xYvdRPwsglFi9de2w8Majx7OUcnpTQeLvZzgNaz6WryPFy8Pc0n48VQxpQ1QyAsT0qRFpQyIRJIZEFZwSnPpYSYF4ImBRcxE1zkKslLRVKSEF4yokZ5SXk8QDc7323tvgL4Jqu0V2CMtND9n3HGeUQFJR15uyNV7byvocy2ta5k3WaUZL89Z4eeO_Zq7xryCooD-VdsB1zvAKl8tnGhtl3If4x-ABB_hKE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848821910</pqid></control><display><type>article</type><title>Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Guillaume-Gentil, Orane ; Abbruzzese, Daniele ; Thomasson, Elsa ; Vörös, Janos ; Zambelli, Tomaso</creator><creatorcontrib>Guillaume-Gentil, Orane ; Abbruzzese, Daniele ; Thomasson, Elsa ; Vörös, Janos ; Zambelli, Tomaso</creatorcontrib><description>The electrochemically triggered dissolution of noncontinuous polyelectrolyte assemblies presenting distinct nanomorphologies and its tuning by chemical cross-linking were monitored locally, in situ, by electrochemical atomic force microscopy. Poly-l-lysine and hyaluronic acid deposited layer-by-layer on indium tin oxide electrodes at specific experimental conditions formed well-defined nanostructures whose morphologies could be easily and precisely followed along the dissolution process. In addition to shrinkage of polyelectrolyte nanodroplets, ecAFM images revealed the faster dissolution of coalesced structures compared to droplet-like complexes, and the readsorption of dissolved polyelectrolytes onto slower dissolving neighboring structures. Covalently cross-linked PLL/HA assemblies dissolved only partially, and exhibited slower dissolution rates compared to native multilayers, with a clear dependence on the cross-link density. Tuning the electrochemical dissolution of polyelectrolyte multilayers through chemical cross-linking opens new prospects for future biomedical applications, such as the development of advanced drug or gene delivery platforms allowing for tightly controlled releases of different compounds at specific rates.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am1007062</identifier><identifier>PMID: 21067205</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystallization - methods ; Electroplating - methods ; Hyaluronic Acid - chemistry ; Hyaluronic Acid - radiation effects ; Materials Testing ; Microscopy, Atomic Force - methods ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Particle Size ; Polylysine - chemistry ; Polylysine - radiation effects</subject><ispartof>ACS applied materials &amp; interfaces, 2010-12, Vol.2 (12), p.3525-3531</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a314t-e04b5f96d114995e5ad14d818baae38d915d8934989bc5bfc060508f40c7bf183</citedby><cites>FETCH-LOGICAL-a314t-e04b5f96d114995e5ad14d818baae38d915d8934989bc5bfc060508f40c7bf183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am1007062$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am1007062$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21067205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillaume-Gentil, Orane</creatorcontrib><creatorcontrib>Abbruzzese, Daniele</creatorcontrib><creatorcontrib>Thomasson, Elsa</creatorcontrib><creatorcontrib>Vörös, Janos</creatorcontrib><creatorcontrib>Zambelli, Tomaso</creatorcontrib><title>Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The electrochemically triggered dissolution of noncontinuous polyelectrolyte assemblies presenting distinct nanomorphologies and its tuning by chemical cross-linking were monitored locally, in situ, by electrochemical atomic force microscopy. Poly-l-lysine and hyaluronic acid deposited layer-by-layer on indium tin oxide electrodes at specific experimental conditions formed well-defined nanostructures whose morphologies could be easily and precisely followed along the dissolution process. In addition to shrinkage of polyelectrolyte nanodroplets, ecAFM images revealed the faster dissolution of coalesced structures compared to droplet-like complexes, and the readsorption of dissolved polyelectrolytes onto slower dissolving neighboring structures. Covalently cross-linked PLL/HA assemblies dissolved only partially, and exhibited slower dissolution rates compared to native multilayers, with a clear dependence on the cross-link density. Tuning the electrochemical dissolution of polyelectrolyte multilayers through chemical cross-linking opens new prospects for future biomedical applications, such as the development of advanced drug or gene delivery platforms allowing for tightly controlled releases of different compounds at specific rates.</description><subject>Crystallization - methods</subject><subject>Electroplating - methods</subject><subject>Hyaluronic Acid - chemistry</subject><subject>Hyaluronic Acid - radiation effects</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Polylysine - chemistry</subject><subject>Polylysine - radiation effects</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1OwzAQhC0EoqVw4AWQLwhxKNiJk9rcqtJCpfIjtT1HjrMBV45d4lgib09QS0-cdqT9drQzCF1SckdJRO9lRQkZkTQ6Qn0qGBvyKImOD5qxHjrzfkNIGkckOUW9iJJ01Mk--p58QqWVNKbFq2BlbgBPDaimdmq_wY_ae2dCo53FrsSvzipnG22DCx6_O9PC7sC0DeCx91DlRoN_wGOL5xYvdRPwsglFi9de2w8Majx7OUcnpTQeLvZzgNaz6WryPFy8Pc0n48VQxpQ1QyAsT0qRFpQyIRJIZEFZwSnPpYSYF4ImBRcxE1zkKslLRVKSEF4yokZ5SXk8QDc7323tvgL4Jqu0V2CMtND9n3HGeUQFJR15uyNV7byvocy2ta5k3WaUZL89Z4eeO_Zq7xryCooD-VdsB1zvAKl8tnGhtl3If4x-ABB_hKE</recordid><startdate>20101222</startdate><enddate>20101222</enddate><creator>Guillaume-Gentil, Orane</creator><creator>Abbruzzese, Daniele</creator><creator>Thomasson, Elsa</creator><creator>Vörös, Janos</creator><creator>Zambelli, Tomaso</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20101222</creationdate><title>Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM</title><author>Guillaume-Gentil, Orane ; Abbruzzese, Daniele ; Thomasson, Elsa ; Vörös, Janos ; Zambelli, Tomaso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a314t-e04b5f96d114995e5ad14d818baae38d915d8934989bc5bfc060508f40c7bf183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Crystallization - methods</topic><topic>Electroplating - methods</topic><topic>Hyaluronic Acid - chemistry</topic><topic>Hyaluronic Acid - radiation effects</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Polylysine - chemistry</topic><topic>Polylysine - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillaume-Gentil, Orane</creatorcontrib><creatorcontrib>Abbruzzese, Daniele</creatorcontrib><creatorcontrib>Thomasson, Elsa</creatorcontrib><creatorcontrib>Vörös, Janos</creatorcontrib><creatorcontrib>Zambelli, Tomaso</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillaume-Gentil, Orane</au><au>Abbruzzese, Daniele</au><au>Thomasson, Elsa</au><au>Vörös, Janos</au><au>Zambelli, Tomaso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2010-12-22</date><risdate>2010</risdate><volume>2</volume><issue>12</issue><spage>3525</spage><epage>3531</epage><pages>3525-3531</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The electrochemically triggered dissolution of noncontinuous polyelectrolyte assemblies presenting distinct nanomorphologies and its tuning by chemical cross-linking were monitored locally, in situ, by electrochemical atomic force microscopy. Poly-l-lysine and hyaluronic acid deposited layer-by-layer on indium tin oxide electrodes at specific experimental conditions formed well-defined nanostructures whose morphologies could be easily and precisely followed along the dissolution process. In addition to shrinkage of polyelectrolyte nanodroplets, ecAFM images revealed the faster dissolution of coalesced structures compared to droplet-like complexes, and the readsorption of dissolved polyelectrolytes onto slower dissolving neighboring structures. Covalently cross-linked PLL/HA assemblies dissolved only partially, and exhibited slower dissolution rates compared to native multilayers, with a clear dependence on the cross-link density. Tuning the electrochemical dissolution of polyelectrolyte multilayers through chemical cross-linking opens new prospects for future biomedical applications, such as the development of advanced drug or gene delivery platforms allowing for tightly controlled releases of different compounds at specific rates.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21067205</pmid><doi>10.1021/am1007062</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2010-12, Vol.2 (12), p.3525-3531
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_848821910
source MEDLINE; American Chemical Society Journals
subjects Crystallization - methods
Electroplating - methods
Hyaluronic Acid - chemistry
Hyaluronic Acid - radiation effects
Materials Testing
Microscopy, Atomic Force - methods
Nanostructures - chemistry
Nanostructures - radiation effects
Nanostructures - ultrastructure
Particle Size
Polylysine - chemistry
Polylysine - radiation effects
title Chemically Tunable Electrochemical Dissolution of Noncontinuous Polyelectrolyte Assemblies: An In Situ Study Using ecAFM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemically%20Tunable%20Electrochemical%20Dissolution%20of%20Noncontinuous%20Polyelectrolyte%20Assemblies:%20An%20In%20Situ%20Study%20Using%20ecAFM&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Guillaume-Gentil,%20Orane&rft.date=2010-12-22&rft.volume=2&rft.issue=12&rft.spage=3525&rft.epage=3531&rft.pages=3525-3531&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am1007062&rft_dat=%3Cproquest_cross%3E848821910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848821910&rft_id=info:pmid/21067205&rfr_iscdi=true