Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack
The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2011-02, Vol.45 (3), p.1107-1113 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1113 |
---|---|
container_issue | 3 |
container_start_page | 1107 |
container_title | Environmental science & technology |
container_volume | 45 |
creator | Adani, Fabrizio Papa, Gabriella Schievano, Andrea Cardinale, Giovanni D’Imporzano, Giuliana Tambone, Fulvia |
description | The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = −0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples. |
doi_str_mv | 10.1021/es1020263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_848686896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848686896</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiq4fB_-AFEHEQzWTNGl6lMUvWFRQ0VtJs1NdbZs1SQ_6682u6wpKIAPhYWbyErIL9BgogxP0sVAm-QoZgGA0FUrAKhlQCjwtuHzaIJvev1JKGadqnWwwgDzLpByQ0bXurDe6weQuuN6E3mFi6yS8YDLEpkkedbxunQ1owqR7nj_2jfWY1M62yVn3-dFichqCNm_bZK3WjcedRd0iD-dn98PLdHRzcTU8HaU643lIASoh6rEUWlGhGWO5FAoBFFZjQXMQWOWKg8i1NKDZuKBKFhlHCVVdZIXkW-Twu-_U2fcefSjbiTdxMd2h7X2pMiXjmcv9P_LV9q6Ly5VKMJnTnENER9_IOOu9w7qcukmr3UcJtJwFXC4DjnZv0bCvWhwv5U-iERwsgJ7FWjvdmYn_dRnEqfE3S6eN_13q_8AvUfaLYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852670731</pqid></control><display><type>article</type><title>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</title><source>ACS Publications</source><source>MEDLINE</source><creator>Adani, Fabrizio ; Papa, Gabriella ; Schievano, Andrea ; Cardinale, Giovanni ; D’Imporzano, Giuliana ; Tambone, Fulvia</creator><creatorcontrib>Adani, Fabrizio ; Papa, Gabriella ; Schievano, Andrea ; Cardinale, Giovanni ; D’Imporzano, Giuliana ; Tambone, Fulvia</creatorcontrib><description>The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = −0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es1020263</identifier><identifier>PMID: 21174466</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Biofuel production ; Biological and medical sciences ; Biomass ; Biotechnology ; Carbon Dioxide - metabolism ; Cell Wall - physiology ; Cell Wall - ultrastructure ; Cellular biology ; Cellulase ; Cellulose ; Cellulose - metabolism ; Correlation analysis ; Crops, Agricultural - cytology ; Crops, Agricultural - metabolism ; Crops, Agricultural - physiology ; Energy ; Enzymes ; Enzymes - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glucose ; Industrial applications and implications. Economical aspects ; Nanostructured materials ; Nitrogen - metabolism ; Particle Size ; Pore size ; Porosity ; Sustainability Engineering and Green Chemistry</subject><ispartof>Environmental science & technology, 2011-02, Vol.45 (3), p.1107-1113</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</citedby><cites>FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es1020263$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es1020263$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24167094$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21174466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adani, Fabrizio</creatorcontrib><creatorcontrib>Papa, Gabriella</creatorcontrib><creatorcontrib>Schievano, Andrea</creatorcontrib><creatorcontrib>Cardinale, Giovanni</creatorcontrib><creatorcontrib>D’Imporzano, Giuliana</creatorcontrib><creatorcontrib>Tambone, Fulvia</creatorcontrib><title>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = −0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.</description><subject>Adsorption</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cell Wall - physiology</subject><subject>Cell Wall - ultrastructure</subject><subject>Cellular biology</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Correlation analysis</subject><subject>Crops, Agricultural - cytology</subject><subject>Crops, Agricultural - metabolism</subject><subject>Crops, Agricultural - physiology</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Enzymes - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Nanostructured materials</subject><subject>Nitrogen - metabolism</subject><subject>Particle Size</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Sustainability Engineering and Green Chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LxDAQBuAgiq4fB_-AFEHEQzWTNGl6lMUvWFRQ0VtJs1NdbZs1SQ_6682u6wpKIAPhYWbyErIL9BgogxP0sVAm-QoZgGA0FUrAKhlQCjwtuHzaIJvev1JKGadqnWwwgDzLpByQ0bXurDe6weQuuN6E3mFi6yS8YDLEpkkedbxunQ1owqR7nj_2jfWY1M62yVn3-dFichqCNm_bZK3WjcedRd0iD-dn98PLdHRzcTU8HaU643lIASoh6rEUWlGhGWO5FAoBFFZjQXMQWOWKg8i1NKDZuKBKFhlHCVVdZIXkW-Twu-_U2fcefSjbiTdxMd2h7X2pMiXjmcv9P_LV9q6Ly5VKMJnTnENER9_IOOu9w7qcukmr3UcJtJwFXC4DjnZv0bCvWhwv5U-iERwsgJ7FWjvdmYn_dRnEqfE3S6eN_13q_8AvUfaLYA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Adani, Fabrizio</creator><creator>Papa, Gabriella</creator><creator>Schievano, Andrea</creator><creator>Cardinale, Giovanni</creator><creator>D’Imporzano, Giuliana</creator><creator>Tambone, Fulvia</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</title><author>Adani, Fabrizio ; Papa, Gabriella ; Schievano, Andrea ; Cardinale, Giovanni ; D’Imporzano, Giuliana ; Tambone, Fulvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cell Wall - physiology</topic><topic>Cell Wall - ultrastructure</topic><topic>Cellular biology</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Correlation analysis</topic><topic>Crops, Agricultural - cytology</topic><topic>Crops, Agricultural - metabolism</topic><topic>Crops, Agricultural - physiology</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Enzymes - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Nanostructured materials</topic><topic>Nitrogen - metabolism</topic><topic>Particle Size</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Sustainability Engineering and Green Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adani, Fabrizio</creatorcontrib><creatorcontrib>Papa, Gabriella</creatorcontrib><creatorcontrib>Schievano, Andrea</creatorcontrib><creatorcontrib>Cardinale, Giovanni</creatorcontrib><creatorcontrib>D’Imporzano, Giuliana</creatorcontrib><creatorcontrib>Tambone, Fulvia</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adani, Fabrizio</au><au>Papa, Gabriella</au><au>Schievano, Andrea</au><au>Cardinale, Giovanni</au><au>D’Imporzano, Giuliana</au><au>Tambone, Fulvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>45</volume><issue>3</issue><spage>1107</spage><epage>1113</epage><pages>1107-1113</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = −0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21174466</pmid><doi>10.1021/es1020263</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2011-02, Vol.45 (3), p.1107-1113 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_848686896 |
source | ACS Publications; MEDLINE |
subjects | Adsorption Biofuel production Biological and medical sciences Biomass Biotechnology Carbon Dioxide - metabolism Cell Wall - physiology Cell Wall - ultrastructure Cellular biology Cellulase Cellulose Cellulose - metabolism Correlation analysis Crops, Agricultural - cytology Crops, Agricultural - metabolism Crops, Agricultural - physiology Energy Enzymes Enzymes - metabolism Fermentation Fundamental and applied biological sciences. Psychology Glucose Industrial applications and implications. Economical aspects Nanostructured materials Nitrogen - metabolism Particle Size Pore size Porosity Sustainability Engineering and Green Chemistry |
title | Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Structure%20of%20the%20Cell%20Wall%20Protecting%20Cellulose%20from%20Enzyme%20Attack&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Adani,%20Fabrizio&rft.date=2011-02-01&rft.volume=45&rft.issue=3&rft.spage=1107&rft.epage=1113&rft.pages=1107-1113&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es1020263&rft_dat=%3Cproquest_cross%3E848686896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852670731&rft_id=info:pmid/21174466&rfr_iscdi=true |