Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack

The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2011-02, Vol.45 (3), p.1107-1113
Hauptverfasser: Adani, Fabrizio, Papa, Gabriella, Schievano, Andrea, Cardinale, Giovanni, D’Imporzano, Giuliana, Tambone, Fulvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1113
container_issue 3
container_start_page 1107
container_title Environmental science & technology
container_volume 45
creator Adani, Fabrizio
Papa, Gabriella
Schievano, Andrea
Cardinale, Giovanni
D’Imporzano, Giuliana
Tambone, Fulvia
description The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores >5 nm diameter. This was confirmed by the good negative (r = −0.87, P < 0.001, n = 11) and positive (r = 0.78, P < 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters >5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.
doi_str_mv 10.1021/es1020263
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_848686896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848686896</sourcerecordid><originalsourceid>FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</originalsourceid><addsrcrecordid>eNpl0E1LxDAQBuAgiq4fB_-AFEHEQzWTNGl6lMUvWFRQ0VtJs1NdbZs1SQ_6682u6wpKIAPhYWbyErIL9BgogxP0sVAm-QoZgGA0FUrAKhlQCjwtuHzaIJvev1JKGadqnWwwgDzLpByQ0bXurDe6weQuuN6E3mFi6yS8YDLEpkkedbxunQ1owqR7nj_2jfWY1M62yVn3-dFichqCNm_bZK3WjcedRd0iD-dn98PLdHRzcTU8HaU643lIASoh6rEUWlGhGWO5FAoBFFZjQXMQWOWKg8i1NKDZuKBKFhlHCVVdZIXkW-Twu-_U2fcefSjbiTdxMd2h7X2pMiXjmcv9P_LV9q6Ly5VKMJnTnENER9_IOOu9w7qcukmr3UcJtJwFXC4DjnZv0bCvWhwv5U-iERwsgJ7FWjvdmYn_dRnEqfE3S6eN_13q_8AvUfaLYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>852670731</pqid></control><display><type>article</type><title>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</title><source>ACS Publications</source><source>MEDLINE</source><creator>Adani, Fabrizio ; Papa, Gabriella ; Schievano, Andrea ; Cardinale, Giovanni ; D’Imporzano, Giuliana ; Tambone, Fulvia</creator><creatorcontrib>Adani, Fabrizio ; Papa, Gabriella ; Schievano, Andrea ; Cardinale, Giovanni ; D’Imporzano, Giuliana ; Tambone, Fulvia</creatorcontrib><description>The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores &gt;5 nm diameter. This was confirmed by the good negative (r = −0.87, P &lt; 0.001, n = 11) and positive (r = 0.78, P &lt; 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters &gt;5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es1020263</identifier><identifier>PMID: 21174466</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Biofuel production ; Biological and medical sciences ; Biomass ; Biotechnology ; Carbon Dioxide - metabolism ; Cell Wall - physiology ; Cell Wall - ultrastructure ; Cellular biology ; Cellulase ; Cellulose ; Cellulose - metabolism ; Correlation analysis ; Crops, Agricultural - cytology ; Crops, Agricultural - metabolism ; Crops, Agricultural - physiology ; Energy ; Enzymes ; Enzymes - metabolism ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Glucose ; Industrial applications and implications. Economical aspects ; Nanostructured materials ; Nitrogen - metabolism ; Particle Size ; Pore size ; Porosity ; Sustainability Engineering and Green Chemistry</subject><ispartof>Environmental science &amp; technology, 2011-02, Vol.45 (3), p.1107-1113</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>Copyright American Chemical Society Feb 1, 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</citedby><cites>FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es1020263$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es1020263$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2769,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24167094$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21174466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Adani, Fabrizio</creatorcontrib><creatorcontrib>Papa, Gabriella</creatorcontrib><creatorcontrib>Schievano, Andrea</creatorcontrib><creatorcontrib>Cardinale, Giovanni</creatorcontrib><creatorcontrib>D’Imporzano, Giuliana</creatorcontrib><creatorcontrib>Tambone, Fulvia</creatorcontrib><title>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores &gt;5 nm diameter. This was confirmed by the good negative (r = −0.87, P &lt; 0.001, n = 11) and positive (r = 0.78, P &lt; 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters &gt;5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.</description><subject>Adsorption</subject><subject>Biofuel production</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cell Wall - physiology</subject><subject>Cell Wall - ultrastructure</subject><subject>Cellular biology</subject><subject>Cellulase</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Correlation analysis</subject><subject>Crops, Agricultural - cytology</subject><subject>Crops, Agricultural - metabolism</subject><subject>Crops, Agricultural - physiology</subject><subject>Energy</subject><subject>Enzymes</subject><subject>Enzymes - metabolism</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Nanostructured materials</subject><subject>Nitrogen - metabolism</subject><subject>Particle Size</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Sustainability Engineering and Green Chemistry</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1LxDAQBuAgiq4fB_-AFEHEQzWTNGl6lMUvWFRQ0VtJs1NdbZs1SQ_6682u6wpKIAPhYWbyErIL9BgogxP0sVAm-QoZgGA0FUrAKhlQCjwtuHzaIJvev1JKGadqnWwwgDzLpByQ0bXurDe6weQuuN6E3mFi6yS8YDLEpkkedbxunQ1owqR7nj_2jfWY1M62yVn3-dFichqCNm_bZK3WjcedRd0iD-dn98PLdHRzcTU8HaU643lIASoh6rEUWlGhGWO5FAoBFFZjQXMQWOWKg8i1NKDZuKBKFhlHCVVdZIXkW-Twu-_U2fcefSjbiTdxMd2h7X2pMiXjmcv9P_LV9q6Ly5VKMJnTnENER9_IOOu9w7qcukmr3UcJtJwFXC4DjnZv0bCvWhwv5U-iERwsgJ7FWjvdmYn_dRnEqfE3S6eN_13q_8AvUfaLYA</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Adani, Fabrizio</creator><creator>Papa, Gabriella</creator><creator>Schievano, Andrea</creator><creator>Cardinale, Giovanni</creator><creator>D’Imporzano, Giuliana</creator><creator>Tambone, Fulvia</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</title><author>Adani, Fabrizio ; Papa, Gabriella ; Schievano, Andrea ; Cardinale, Giovanni ; D’Imporzano, Giuliana ; Tambone, Fulvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a437t-11b55fd65a805a2227658e118ebd50715eb783157a6c1a2d9086943e61bf94963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adsorption</topic><topic>Biofuel production</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cell Wall - physiology</topic><topic>Cell Wall - ultrastructure</topic><topic>Cellular biology</topic><topic>Cellulase</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Correlation analysis</topic><topic>Crops, Agricultural - cytology</topic><topic>Crops, Agricultural - metabolism</topic><topic>Crops, Agricultural - physiology</topic><topic>Energy</topic><topic>Enzymes</topic><topic>Enzymes - metabolism</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Nanostructured materials</topic><topic>Nitrogen - metabolism</topic><topic>Particle Size</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Sustainability Engineering and Green Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adani, Fabrizio</creatorcontrib><creatorcontrib>Papa, Gabriella</creatorcontrib><creatorcontrib>Schievano, Andrea</creatorcontrib><creatorcontrib>Cardinale, Giovanni</creatorcontrib><creatorcontrib>D’Imporzano, Giuliana</creatorcontrib><creatorcontrib>Tambone, Fulvia</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adani, Fabrizio</au><au>Papa, Gabriella</au><au>Schievano, Andrea</au><au>Cardinale, Giovanni</au><au>D’Imporzano, Giuliana</au><au>Tambone, Fulvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>45</volume><issue>3</issue><spage>1107</spage><epage>1113</epage><pages>1107-1113</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>The cell wall structure protects cellulose from enzymatic attack and its successive fermentation. The nature of this protection consists in the very complex macroscopic and microscopic structure of cell wall that limits transport. Explaining this kind of protection is critical in future research to improve cell polymer availability for enzymatic attack. This research shows that the complete description of the cell wall topography at a nanoscale level allows a mechanistic understanding of cellulose protection. For this purpose, we used gas adsorption methods (CO2 at 273 K and N2 at 77 K) to detect mesoporosity (pore size of 1.5−30 nm diameter; MeS) and microporosity (pore size of 0.3−1.5 nm diameter; MiS) of the cell wall of five energy crops, i.e., giant cane, rivet wheat straw, miscanthus, proso millet, and sorghum. The presence of both hemicelluloses in the spaces between cellulose fibrils and the unhydrolyzable and highly cross-linked lignocarbohydrate complex (LCC) determines a microporous (80% pores having diameters below 0.8 nm) structure of the cell wall that prevents the cellulase enzymes from coming into direct contact with the cellulose, as their sizes exceed the cell wall pore size. On the other hand, the removal of the hemicelluloses and of the LCC complex determines a reduction of the MiS and an increase of the available surface for enzymatic attack, i.e., pores &gt;5 nm diameter. This was confirmed by the good negative (r = −0.87, P &lt; 0.001, n = 11) and positive (r = 0.78, P &lt; 0.005, n = 11) correlations found for microporosity and mesoporosity (pores of diameters &gt;5 nm), respectively, vs the glucose production, by cellulase enzyme attack in specific enzymatic hydrolysis tests performed on biomass samples.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21174466</pmid><doi>10.1021/es1020263</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2011-02, Vol.45 (3), p.1107-1113
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_848686896
source ACS Publications; MEDLINE
subjects Adsorption
Biofuel production
Biological and medical sciences
Biomass
Biotechnology
Carbon Dioxide - metabolism
Cell Wall - physiology
Cell Wall - ultrastructure
Cellular biology
Cellulase
Cellulose
Cellulose - metabolism
Correlation analysis
Crops, Agricultural - cytology
Crops, Agricultural - metabolism
Crops, Agricultural - physiology
Energy
Enzymes
Enzymes - metabolism
Fermentation
Fundamental and applied biological sciences. Psychology
Glucose
Industrial applications and implications. Economical aspects
Nanostructured materials
Nitrogen - metabolism
Particle Size
Pore size
Porosity
Sustainability Engineering and Green Chemistry
title Nanoscale Structure of the Cell Wall Protecting Cellulose from Enzyme Attack
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T02%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Structure%20of%20the%20Cell%20Wall%20Protecting%20Cellulose%20from%20Enzyme%20Attack&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Adani,%20Fabrizio&rft.date=2011-02-01&rft.volume=45&rft.issue=3&rft.spage=1107&rft.epage=1113&rft.pages=1107-1113&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es1020263&rft_dat=%3Cproquest_cross%3E848686896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=852670731&rft_id=info:pmid/21174466&rfr_iscdi=true