How to analyze longitudinal multilevel physical activity data with many zeros?

Abstract Background Physical activity (PA) is a modifiable lifestyle factor for many chronic diseases with established health benefits. PA outcomes are measured and assessed in many longitudinal studies, but their analyses often pose difficulties due to the presence of many zeros, extreme skewness,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Preventive medicine 2010-12, Vol.51 (6), p.476-481
Hauptverfasser: Lee, Andy H, Zhao, Yun, Yau, Kelvin K.W, Xiang, Liming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 6
container_start_page 476
container_title Preventive medicine
container_volume 51
creator Lee, Andy H
Zhao, Yun
Yau, Kelvin K.W
Xiang, Liming
description Abstract Background Physical activity (PA) is a modifiable lifestyle factor for many chronic diseases with established health benefits. PA outcomes are measured and assessed in many longitudinal studies, but their analyses often pose difficulties due to the presence of many zeros, extreme skewness, and lack of independence, which render standard regression methods inappropriate. Methods A two-part multilevel modeling approach is used to analyze the heterogeneous and correlated PA data. In the first part, a logistic mixed regression model is fitted to estimate the prevalence of PA and factors associated with PA participation over time. For subjects engaging in PA, a gamma mixed regression model is adopted in the second part to assess the effects of predictor variables on the repeated PA outcomes nested within clusters. Extra variations are accommodated within the modeling process by random effects assigned to each cluster and each subject in the cohort. Results The findings in a longitudinal multilevel study of a community-based PA intervention for older adults demonstrate the effectiveness of the intervention program and enable the identification of pertinent factors affecting participation and PA levels over time. Conclusions The two-part mixed regression approach provides a practical and statistically valid method to analyze the skewed and correlated PA data with many zeros. The methodology can be extended to handle complex hierarchical or multilevel settings by suitable specification of the covariance structure in the random components, model fitting of which can be performed in STATA using GLLAMM with various user-specified options.
doi_str_mv 10.1016/j.ypmed.2010.09.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_847440245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0091743510003737</els_id><sourcerecordid>815966813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-bb8eba57b09f505a28e92b7fb72e59c1287edc834c4d3e8a39f3cba29e3290433</originalsourceid><addsrcrecordid>eNqNkktv1DAUhS0EokPhFyAh71hluH7F8QJQVUGLVMECWFuOc0M95DHEzlTpr8fptBs2RV5Yvj7nXNnfJeQ1gy0DVr7bbZd9j82WQ66A2QLjT8iGgSkL4CU8JRsAwwothTohL2LcATBWgnxOTjgYDorDhny9HG9oGqkbXLfcIu3G4VdIcxPymfZzl0KHB-zo_nqJweea8ykcQlpo45KjNyFd094NC73FaYwfX5JnresivrrfT8nPz59-nF8WV98uvpyfXRVeap2Kuq6wdkrXYFoFyvEKDa91W2uOynjGK42Nr4T0shFYOWFa4WvHDQpuQApxSt4ec_fT-GfGmGwfoseucwOOc7SV1FICl-pxpTBKCwn_kcmUKcuKrUpxVPr85jhha_dT6N20WAZ2ZWN39o6NXdlYMDazya439_lzvd49eB5gZMH7owDzzx0CTjb6gIPHJkzok23G8EiDD__4fReGldpvXDDuxnnKVKNlNnIL9vs6Hut0MAAQOq-_bae1rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>815966813</pqid></control><display><type>article</type><title>How to analyze longitudinal multilevel physical activity data with many zeros?</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Lee, Andy H ; Zhao, Yun ; Yau, Kelvin K.W ; Xiang, Liming</creator><creatorcontrib>Lee, Andy H ; Zhao, Yun ; Yau, Kelvin K.W ; Xiang, Liming</creatorcontrib><description>Abstract Background Physical activity (PA) is a modifiable lifestyle factor for many chronic diseases with established health benefits. PA outcomes are measured and assessed in many longitudinal studies, but their analyses often pose difficulties due to the presence of many zeros, extreme skewness, and lack of independence, which render standard regression methods inappropriate. Methods A two-part multilevel modeling approach is used to analyze the heterogeneous and correlated PA data. In the first part, a logistic mixed regression model is fitted to estimate the prevalence of PA and factors associated with PA participation over time. For subjects engaging in PA, a gamma mixed regression model is adopted in the second part to assess the effects of predictor variables on the repeated PA outcomes nested within clusters. Extra variations are accommodated within the modeling process by random effects assigned to each cluster and each subject in the cohort. Results The findings in a longitudinal multilevel study of a community-based PA intervention for older adults demonstrate the effectiveness of the intervention program and enable the identification of pertinent factors affecting participation and PA levels over time. Conclusions The two-part mixed regression approach provides a practical and statistically valid method to analyze the skewed and correlated PA data with many zeros. The methodology can be extended to handle complex hierarchical or multilevel settings by suitable specification of the covariance structure in the random components, model fitting of which can be performed in STATA using GLLAMM with various user-specified options.</description><identifier>ISSN: 0091-7435</identifier><identifier>EISSN: 1096-0260</identifier><identifier>DOI: 10.1016/j.ypmed.2010.09.012</identifier><identifier>PMID: 20920520</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Australia ; Community based programmes ; Community Participation ; Data Interpretation, Statistical ; Female ; Gamma mixed regression ; Humans ; Identification ; Inappropriateness ; Internal Medicine ; Longitudinal Studies ; Longitudinal study ; Male ; Motor Activity ; Multilevel modeling ; Physical activity ; Prevalence ; Prospective Studies ; Random effects ; Regression Analysis ; Specification</subject><ispartof>Preventive medicine, 2010-12, Vol.51 (6), p.476-481</ispartof><rights>Elsevier Inc.</rights><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-bb8eba57b09f505a28e92b7fb72e59c1287edc834c4d3e8a39f3cba29e3290433</citedby><cites>FETCH-LOGICAL-c477t-bb8eba57b09f505a28e92b7fb72e59c1287edc834c4d3e8a39f3cba29e3290433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ypmed.2010.09.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,30983,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20920520$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Andy H</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Yau, Kelvin K.W</creatorcontrib><creatorcontrib>Xiang, Liming</creatorcontrib><title>How to analyze longitudinal multilevel physical activity data with many zeros?</title><title>Preventive medicine</title><addtitle>Prev Med</addtitle><description>Abstract Background Physical activity (PA) is a modifiable lifestyle factor for many chronic diseases with established health benefits. PA outcomes are measured and assessed in many longitudinal studies, but their analyses often pose difficulties due to the presence of many zeros, extreme skewness, and lack of independence, which render standard regression methods inappropriate. Methods A two-part multilevel modeling approach is used to analyze the heterogeneous and correlated PA data. In the first part, a logistic mixed regression model is fitted to estimate the prevalence of PA and factors associated with PA participation over time. For subjects engaging in PA, a gamma mixed regression model is adopted in the second part to assess the effects of predictor variables on the repeated PA outcomes nested within clusters. Extra variations are accommodated within the modeling process by random effects assigned to each cluster and each subject in the cohort. Results The findings in a longitudinal multilevel study of a community-based PA intervention for older adults demonstrate the effectiveness of the intervention program and enable the identification of pertinent factors affecting participation and PA levels over time. Conclusions The two-part mixed regression approach provides a practical and statistically valid method to analyze the skewed and correlated PA data with many zeros. The methodology can be extended to handle complex hierarchical or multilevel settings by suitable specification of the covariance structure in the random components, model fitting of which can be performed in STATA using GLLAMM with various user-specified options.</description><subject>Adult</subject><subject>Aged</subject><subject>Australia</subject><subject>Community based programmes</subject><subject>Community Participation</subject><subject>Data Interpretation, Statistical</subject><subject>Female</subject><subject>Gamma mixed regression</subject><subject>Humans</subject><subject>Identification</subject><subject>Inappropriateness</subject><subject>Internal Medicine</subject><subject>Longitudinal Studies</subject><subject>Longitudinal study</subject><subject>Male</subject><subject>Motor Activity</subject><subject>Multilevel modeling</subject><subject>Physical activity</subject><subject>Prevalence</subject><subject>Prospective Studies</subject><subject>Random effects</subject><subject>Regression Analysis</subject><subject>Specification</subject><issn>0091-7435</issn><issn>1096-0260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqNkktv1DAUhS0EokPhFyAh71hluH7F8QJQVUGLVMECWFuOc0M95DHEzlTpr8fptBs2RV5Yvj7nXNnfJeQ1gy0DVr7bbZd9j82WQ66A2QLjT8iGgSkL4CU8JRsAwwothTohL2LcATBWgnxOTjgYDorDhny9HG9oGqkbXLfcIu3G4VdIcxPymfZzl0KHB-zo_nqJweea8ykcQlpo45KjNyFd094NC73FaYwfX5JnresivrrfT8nPz59-nF8WV98uvpyfXRVeap2Kuq6wdkrXYFoFyvEKDa91W2uOynjGK42Nr4T0shFYOWFa4WvHDQpuQApxSt4ec_fT-GfGmGwfoseucwOOc7SV1FICl-pxpTBKCwn_kcmUKcuKrUpxVPr85jhha_dT6N20WAZ2ZWN39o6NXdlYMDazya439_lzvd49eB5gZMH7owDzzx0CTjb6gIPHJkzok23G8EiDD__4fReGldpvXDDuxnnKVKNlNnIL9vs6Hut0MAAQOq-_bae1rg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Lee, Andy H</creator><creator>Zhao, Yun</creator><creator>Yau, Kelvin K.W</creator><creator>Xiang, Liming</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QJ</scope><scope>7TS</scope></search><sort><creationdate>20101201</creationdate><title>How to analyze longitudinal multilevel physical activity data with many zeros?</title><author>Lee, Andy H ; Zhao, Yun ; Yau, Kelvin K.W ; Xiang, Liming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-bb8eba57b09f505a28e92b7fb72e59c1287edc834c4d3e8a39f3cba29e3290433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Australia</topic><topic>Community based programmes</topic><topic>Community Participation</topic><topic>Data Interpretation, Statistical</topic><topic>Female</topic><topic>Gamma mixed regression</topic><topic>Humans</topic><topic>Identification</topic><topic>Inappropriateness</topic><topic>Internal Medicine</topic><topic>Longitudinal Studies</topic><topic>Longitudinal study</topic><topic>Male</topic><topic>Motor Activity</topic><topic>Multilevel modeling</topic><topic>Physical activity</topic><topic>Prevalence</topic><topic>Prospective Studies</topic><topic>Random effects</topic><topic>Regression Analysis</topic><topic>Specification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Andy H</creatorcontrib><creatorcontrib>Zhao, Yun</creatorcontrib><creatorcontrib>Yau, Kelvin K.W</creatorcontrib><creatorcontrib>Xiang, Liming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Physical Education Index</collection><jtitle>Preventive medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Andy H</au><au>Zhao, Yun</au><au>Yau, Kelvin K.W</au><au>Xiang, Liming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to analyze longitudinal multilevel physical activity data with many zeros?</atitle><jtitle>Preventive medicine</jtitle><addtitle>Prev Med</addtitle><date>2010-12-01</date><risdate>2010</risdate><volume>51</volume><issue>6</issue><spage>476</spage><epage>481</epage><pages>476-481</pages><issn>0091-7435</issn><eissn>1096-0260</eissn><abstract>Abstract Background Physical activity (PA) is a modifiable lifestyle factor for many chronic diseases with established health benefits. PA outcomes are measured and assessed in many longitudinal studies, but their analyses often pose difficulties due to the presence of many zeros, extreme skewness, and lack of independence, which render standard regression methods inappropriate. Methods A two-part multilevel modeling approach is used to analyze the heterogeneous and correlated PA data. In the first part, a logistic mixed regression model is fitted to estimate the prevalence of PA and factors associated with PA participation over time. For subjects engaging in PA, a gamma mixed regression model is adopted in the second part to assess the effects of predictor variables on the repeated PA outcomes nested within clusters. Extra variations are accommodated within the modeling process by random effects assigned to each cluster and each subject in the cohort. Results The findings in a longitudinal multilevel study of a community-based PA intervention for older adults demonstrate the effectiveness of the intervention program and enable the identification of pertinent factors affecting participation and PA levels over time. Conclusions The two-part mixed regression approach provides a practical and statistically valid method to analyze the skewed and correlated PA data with many zeros. The methodology can be extended to handle complex hierarchical or multilevel settings by suitable specification of the covariance structure in the random components, model fitting of which can be performed in STATA using GLLAMM with various user-specified options.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20920520</pmid><doi>10.1016/j.ypmed.2010.09.012</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0091-7435
ispartof Preventive medicine, 2010-12, Vol.51 (6), p.476-481
issn 0091-7435
1096-0260
language eng
recordid cdi_proquest_miscellaneous_847440245
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Adult
Aged
Australia
Community based programmes
Community Participation
Data Interpretation, Statistical
Female
Gamma mixed regression
Humans
Identification
Inappropriateness
Internal Medicine
Longitudinal Studies
Longitudinal study
Male
Motor Activity
Multilevel modeling
Physical activity
Prevalence
Prospective Studies
Random effects
Regression Analysis
Specification
title How to analyze longitudinal multilevel physical activity data with many zeros?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20analyze%20longitudinal%20multilevel%20physical%20activity%20data%20with%20many%20zeros?&rft.jtitle=Preventive%20medicine&rft.au=Lee,%20Andy%20H&rft.date=2010-12-01&rft.volume=51&rft.issue=6&rft.spage=476&rft.epage=481&rft.pages=476-481&rft.issn=0091-7435&rft.eissn=1096-0260&rft_id=info:doi/10.1016/j.ypmed.2010.09.012&rft_dat=%3Cproquest_cross%3E815966813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=815966813&rft_id=info:pmid/20920520&rft_els_id=S0091743510003737&rfr_iscdi=true