Implementation of multi-objective optimization for vulnerability analysis of complex networks
This paper describes the vulnerability analysis of a complex network as the process of identifying the combination of component failures that provide maximum reduction of network performance. By way of a vulnerability analysis, the understanding of these failures can be related to the occurrence of...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability Journal of risk and reliability, 2010-06, Vol.224 (2), p.87-95 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | 2 |
container_start_page | 87 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability |
container_volume | 224 |
creator | Rocco, C M Ramirez-Marquez, J E Salazar, D E Hernandez, I |
description | This paper describes the vulnerability analysis of a complex network as the process of identifying the combination of component failures that provide maximum reduction of network performance. By way of a vulnerability analysis, the understanding of these failures can be related to the occurrence of a disruptive event, and also to the fundamental tasks for the protection of critical infrastructures. To describe vulnerability, the paper provides an analytical method to characterize completely the importance of network disruptions and identify a vulnerability set via the solution of a proposed multi-objective network vulnerability problem. This approach makes it possible to recognize that decision-makers (e.g. network managers) could benefit from understanding the relationship between different failure scenarios and network performance, for example, how the increase in protection resources would reduce the vulnerability of the network. Numerical examples, related to a medium-sized network and two complex networks, are solved using the evolutionary algorithm known as the multi-objective probabilistic solution discovery algorithm (MO-PSDA) and illustrate the proposed approach. |
doi_str_mv | 10.1243/1748006XJRR274 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_847438464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1243_1748006XJRR274</sage_id><sourcerecordid>2319728241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5cc12f83f2d8e9af76a47b574db86dbb25adee0d1239648e2de03eac489fa6133</originalsourceid><addsrcrecordid>eNp10c1LwzAYBvAiCs7p1XPRgwfpzFeT7Cjix2QgDIVdpKTtW8lsm5qk0_nX21IRFT0lJL_ngZc3CA4xmmDC6BkWTCLEl7eLBRFsKxj1DxFCQm5_3flyN9hzboUQE5ijUfA4q5oSKqi98trUoSnCqi29jky6gszrNYSm8brS78N_YWy4bssarEp1qf0mVLUqN067PpqZvu0trMG_Gvvs9oOdQpUODj7PcfBwdXl_cRPN765nF-fzKKOc-CjOMkwKSQuSS5iqQnDFRBoLlqeS52lKYpUDoBwTOuVMAskBUVAZk9NCcUzpODgZehtrXlpwPqm0y6AsVQ2mdYlkglHJOOvk0S-5Mq3tRugQx5IRRESHjv9DWMqYS4Ip6dRkUJk1zlkoksbqStlNglHSbyT5uZEucDoEnHqCb5V_6w_-l4z7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885682132</pqid></control><display><type>article</type><title>Implementation of multi-objective optimization for vulnerability analysis of complex networks</title><source>Access via SAGE</source><creator>Rocco, C M ; Ramirez-Marquez, J E ; Salazar, D E ; Hernandez, I</creator><creatorcontrib>Rocco, C M ; Ramirez-Marquez, J E ; Salazar, D E ; Hernandez, I</creatorcontrib><description>This paper describes the vulnerability analysis of a complex network as the process of identifying the combination of component failures that provide maximum reduction of network performance. By way of a vulnerability analysis, the understanding of these failures can be related to the occurrence of a disruptive event, and also to the fundamental tasks for the protection of critical infrastructures. To describe vulnerability, the paper provides an analytical method to characterize completely the importance of network disruptions and identify a vulnerability set via the solution of a proposed multi-objective network vulnerability problem. This approach makes it possible to recognize that decision-makers (e.g. network managers) could benefit from understanding the relationship between different failure scenarios and network performance, for example, how the increase in protection resources would reduce the vulnerability of the network. Numerical examples, related to a medium-sized network and two complex networks, are solved using the evolutionary algorithm known as the multi-objective probabilistic solution discovery algorithm (MO-PSDA) and illustrate the proposed approach.</description><identifier>ISSN: 1748-006X</identifier><identifier>EISSN: 1748-0078</identifier><identifier>DOI: 10.1243/1748006XJRR274</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Complex systems ; Decision making ; Evolutionary algorithms ; Failure analysis ; Multiple objective analysis ; Optimization ; Sensitivity analysis</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2010-06, Vol.224 (2), p.87-95</ispartof><rights>2010 Institution of Mechanical Engineers</rights><rights>Copyright Professional Engineering Publishing Ltd 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5cc12f83f2d8e9af76a47b574db86dbb25adee0d1239648e2de03eac489fa6133</citedby><cites>FETCH-LOGICAL-c362t-5cc12f83f2d8e9af76a47b574db86dbb25adee0d1239648e2de03eac489fa6133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1243/1748006XJRR274$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1243/1748006XJRR274$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Rocco, C M</creatorcontrib><creatorcontrib>Ramirez-Marquez, J E</creatorcontrib><creatorcontrib>Salazar, D E</creatorcontrib><creatorcontrib>Hernandez, I</creatorcontrib><title>Implementation of multi-objective optimization for vulnerability analysis of complex networks</title><title>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</title><description>This paper describes the vulnerability analysis of a complex network as the process of identifying the combination of component failures that provide maximum reduction of network performance. By way of a vulnerability analysis, the understanding of these failures can be related to the occurrence of a disruptive event, and also to the fundamental tasks for the protection of critical infrastructures. To describe vulnerability, the paper provides an analytical method to characterize completely the importance of network disruptions and identify a vulnerability set via the solution of a proposed multi-objective network vulnerability problem. This approach makes it possible to recognize that decision-makers (e.g. network managers) could benefit from understanding the relationship between different failure scenarios and network performance, for example, how the increase in protection resources would reduce the vulnerability of the network. Numerical examples, related to a medium-sized network and two complex networks, are solved using the evolutionary algorithm known as the multi-objective probabilistic solution discovery algorithm (MO-PSDA) and illustrate the proposed approach.</description><subject>Algorithms</subject><subject>Complex systems</subject><subject>Decision making</subject><subject>Evolutionary algorithms</subject><subject>Failure analysis</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Sensitivity analysis</subject><issn>1748-006X</issn><issn>1748-0078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp10c1LwzAYBvAiCs7p1XPRgwfpzFeT7Cjix2QgDIVdpKTtW8lsm5qk0_nX21IRFT0lJL_ngZc3CA4xmmDC6BkWTCLEl7eLBRFsKxj1DxFCQm5_3flyN9hzboUQE5ijUfA4q5oSKqi98trUoSnCqi29jky6gszrNYSm8brS78N_YWy4bssarEp1qf0mVLUqN067PpqZvu0trMG_Gvvs9oOdQpUODj7PcfBwdXl_cRPN765nF-fzKKOc-CjOMkwKSQuSS5iqQnDFRBoLlqeS52lKYpUDoBwTOuVMAskBUVAZk9NCcUzpODgZehtrXlpwPqm0y6AsVQ2mdYlkglHJOOvk0S-5Mq3tRugQx5IRRESHjv9DWMqYS4Ip6dRkUJk1zlkoksbqStlNglHSbyT5uZEucDoEnHqCb5V_6w_-l4z7</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Rocco, C M</creator><creator>Ramirez-Marquez, J E</creator><creator>Salazar, D E</creator><creator>Hernandez, I</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20100601</creationdate><title>Implementation of multi-objective optimization for vulnerability analysis of complex networks</title><author>Rocco, C M ; Ramirez-Marquez, J E ; Salazar, D E ; Hernandez, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5cc12f83f2d8e9af76a47b574db86dbb25adee0d1239648e2de03eac489fa6133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Complex systems</topic><topic>Decision making</topic><topic>Evolutionary algorithms</topic><topic>Failure analysis</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocco, C M</creatorcontrib><creatorcontrib>Ramirez-Marquez, J E</creatorcontrib><creatorcontrib>Salazar, D E</creatorcontrib><creatorcontrib>Hernandez, I</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocco, C M</au><au>Ramirez-Marquez, J E</au><au>Salazar, D E</au><au>Hernandez, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of multi-objective optimization for vulnerability analysis of complex networks</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>224</volume><issue>2</issue><spage>87</spage><epage>95</epage><pages>87-95</pages><issn>1748-006X</issn><eissn>1748-0078</eissn><abstract>This paper describes the vulnerability analysis of a complex network as the process of identifying the combination of component failures that provide maximum reduction of network performance. By way of a vulnerability analysis, the understanding of these failures can be related to the occurrence of a disruptive event, and also to the fundamental tasks for the protection of critical infrastructures. To describe vulnerability, the paper provides an analytical method to characterize completely the importance of network disruptions and identify a vulnerability set via the solution of a proposed multi-objective network vulnerability problem. This approach makes it possible to recognize that decision-makers (e.g. network managers) could benefit from understanding the relationship between different failure scenarios and network performance, for example, how the increase in protection resources would reduce the vulnerability of the network. Numerical examples, related to a medium-sized network and two complex networks, are solved using the evolutionary algorithm known as the multi-objective probabilistic solution discovery algorithm (MO-PSDA) and illustrate the proposed approach.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1243/1748006XJRR274</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-006X |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part O, Journal of risk and reliability, 2010-06, Vol.224 (2), p.87-95 |
issn | 1748-006X 1748-0078 |
language | eng |
recordid | cdi_proquest_miscellaneous_847438464 |
source | Access via SAGE |
subjects | Algorithms Complex systems Decision making Evolutionary algorithms Failure analysis Multiple objective analysis Optimization Sensitivity analysis |
title | Implementation of multi-objective optimization for vulnerability analysis of complex networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20multi-objective%20optimization%20for%20vulnerability%20analysis%20of%20complex%20networks&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20O,%20Journal%20of%20risk%20and%20reliability&rft.au=Rocco,%20C%20M&rft.date=2010-06-01&rft.volume=224&rft.issue=2&rft.spage=87&rft.epage=95&rft.pages=87-95&rft.issn=1748-006X&rft.eissn=1748-0078&rft_id=info:doi/10.1243/1748006XJRR274&rft_dat=%3Cproquest_cross%3E2319728241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885682132&rft_id=info:pmid/&rft_sage_id=10.1243_1748006XJRR274&rfr_iscdi=true |