Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension

Endothelial dysfunction is a hallmark of, and plays a pivotal role in the pathogenesis of cardiometabolic diseases, including type II diabetes, obesity, and hypertension. It has been well established that epoxyeicosatrienoic acids (EETs) act as an endothelial derived hyperpolarization factor (EDHF)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2011-03, Vol.654 (1), p.68-74
Hauptverfasser: Zhang, Le-Ning, Vincelette, Jon, Chen, Dawn, Gless, Richard D., Anandan, Sampath-Kumar, Rubanyi, Gabor M., Webb, Heather K., MacIntyre, D. Euan, Wang, Yi-Xin (Jim)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue 1
container_start_page 68
container_title European journal of pharmacology
container_volume 654
creator Zhang, Le-Ning
Vincelette, Jon
Chen, Dawn
Gless, Richard D.
Anandan, Sampath-Kumar
Rubanyi, Gabor M.
Webb, Heather K.
MacIntyre, D. Euan
Wang, Yi-Xin (Jim)
description Endothelial dysfunction is a hallmark of, and plays a pivotal role in the pathogenesis of cardiometabolic diseases, including type II diabetes, obesity, and hypertension. It has been well established that epoxyeicosatrienoic acids (EETs) act as an endothelial derived hyperpolarization factor (EDHF). Soluble epoxide hydrolase (s-EH) rapidly hydrolyses certain epoxylipids (e.g. EETs) to less bioactive diols (DHETs), thereby attenuating the evoked vasodilator effects. The aim of the present study was to examine if inhibition of s-EH can restore impaired endothelial function in three animal models of cardiometabolic diseases. Isolated vessel rings of the aorta and/or mesenteric artery from mice or rats were pre-contracted using phenylephrine or U46619. Endothelium-dependent and independent vasorelaxation to acetylcholine and sodium nitroprusside (SNP) were measured using wire myography in vessels isolated from db/db or diet-induced obesity (DIO) mice, and angiotensin II-induced hypertensive rats treated chronically with s-EH inhibitors AR9281 or AR9276 or with vehicle. Vasorelaxation to acetylcholine, but not to SNP was severely impaired in all three animal models. Oral administration of AR9281 or AR9276 abolished whole blood s-EH activity, elevated epoxy/diol lipid ratio, and abrogated endothelial dysfunction in all three models. Incubating the mesenteric artery of db/db mice with L-NAME and indomethacin to block nitric oxide (NO) and prostacyclin formation did not affect AR9821-induced improvement of endothelial function. These data indicate that inhibition of s-EH ameliorates endothelial dysfunction and that effects in the db/db model are independent of the presence of NO and cyclooxygenase derived prostanoids. Thus, preserving vasodilator EETs by inhibition of s-EH may be of therapeutic benefit by improving endothelial function in cardiometabolic diseases.
doi_str_mv 10.1016/j.ejphar.2010.12.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_847286259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014299910012434</els_id><sourcerecordid>847286259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-80a2d1b6e79b56a4fa154f0638f2c11770aa2d94577de0e1fc85faeca4574acb3</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoTs_oPxCtjbix2iT1SjaCDD4GBlzorMOt5MZOk07apGqwl_5zU1arO1eBw3fOvfeEkGeMbhll_Zv9FvfHHaQtp4vEt0V8QDZMDLKmA-MPyYZS1tZcSnlBLnPeU0o7ybvH5IKzglHBN-TnTdi50U0uhiraKkc_jx4rPMYfzmC1O5kUPWSsYJowzDBhrjCYOO3QO_CVOWU7B_3b70IFwR2KeogGfV4CjYMRi-l1FUfMbjoVxJTYI6aSl4vtCXlkwWd8en6vyN2H91-vP9W3nz_eXL-7rXUr2FQLCtywscdBjl0PrQXWtZb2jbBcMzYMFAog224YDFJkVovOAmooSgt6bK7IqzX3mOL3GfOkDi5r9B4Cxjkr0Q5c9LyThWxXUqeYc0KrjqmclU6KUbV0r_Zq7V4t3SvGVRGL7fl5wDwe0Pw1_Sm7AC_PAGQN3iYI2uV_XCOY7NumcC9WzkJU8C0V5u5LmdSVD2ykFMuGb1eitIz3DpPK2mHQaFxCPSkT3f93_QVhA7DH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847286259</pqid></control><display><type>article</type><title>Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Le-Ning ; Vincelette, Jon ; Chen, Dawn ; Gless, Richard D. ; Anandan, Sampath-Kumar ; Rubanyi, Gabor M. ; Webb, Heather K. ; MacIntyre, D. Euan ; Wang, Yi-Xin (Jim)</creator><creatorcontrib>Zhang, Le-Ning ; Vincelette, Jon ; Chen, Dawn ; Gless, Richard D. ; Anandan, Sampath-Kumar ; Rubanyi, Gabor M. ; Webb, Heather K. ; MacIntyre, D. Euan ; Wang, Yi-Xin (Jim)</creatorcontrib><description>Endothelial dysfunction is a hallmark of, and plays a pivotal role in the pathogenesis of cardiometabolic diseases, including type II diabetes, obesity, and hypertension. It has been well established that epoxyeicosatrienoic acids (EETs) act as an endothelial derived hyperpolarization factor (EDHF). Soluble epoxide hydrolase (s-EH) rapidly hydrolyses certain epoxylipids (e.g. EETs) to less bioactive diols (DHETs), thereby attenuating the evoked vasodilator effects. The aim of the present study was to examine if inhibition of s-EH can restore impaired endothelial function in three animal models of cardiometabolic diseases. Isolated vessel rings of the aorta and/or mesenteric artery from mice or rats were pre-contracted using phenylephrine or U46619. Endothelium-dependent and independent vasorelaxation to acetylcholine and sodium nitroprusside (SNP) were measured using wire myography in vessels isolated from db/db or diet-induced obesity (DIO) mice, and angiotensin II-induced hypertensive rats treated chronically with s-EH inhibitors AR9281 or AR9276 or with vehicle. Vasorelaxation to acetylcholine, but not to SNP was severely impaired in all three animal models. Oral administration of AR9281 or AR9276 abolished whole blood s-EH activity, elevated epoxy/diol lipid ratio, and abrogated endothelial dysfunction in all three models. Incubating the mesenteric artery of db/db mice with L-NAME and indomethacin to block nitric oxide (NO) and prostacyclin formation did not affect AR9821-induced improvement of endothelial function. These data indicate that inhibition of s-EH ameliorates endothelial dysfunction and that effects in the db/db model are independent of the presence of NO and cyclooxygenase derived prostanoids. Thus, preserving vasodilator EETs by inhibition of s-EH may be of therapeutic benefit by improving endothelial function in cardiometabolic diseases.</description><identifier>ISSN: 0014-2999</identifier><identifier>EISSN: 1879-0712</identifier><identifier>DOI: 10.1016/j.ejphar.2010.12.016</identifier><identifier>PMID: 21187082</identifier><identifier>CODEN: EJPHAZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject><![CDATA[acetylcholine ; Adamantane - administration & dosage ; Adamantane - analogs & derivatives ; Adamantane - pharmacology ; Administration, Oral ; animal models ; Animals ; aorta ; Aorta - drug effects ; Aorta - metabolism ; Arterial hypertension. Arterial hypotension ; bioactive properties ; Biological and medical sciences ; blood ; Blood and lymphatic vessels ; Cardiology. Vascular system ; Cardiometabolic diseases ; Diabetes Mellitus, Experimental - drug therapy ; Diabetes Mellitus, Experimental - physiopathology ; Diabetes Mellitus, Type 2 - drug therapy ; Diabetes Mellitus, Type 2 - physiopathology ; Diabetes. Impaired glucose tolerance ; Disease Models, Animal ; Endocrine pancreas. Apud cells (diseases) ; Endocrinopathies ; Endothelial derived hyperpolarization factors ; Endothelial dysfunction ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - pathology ; epoxide hydrolase ; Epoxide Hydrolases - antagonists & inhibitors ; Epoxide Hydrolases - metabolism ; epoxides ; Epoxyeicosatrienoic acids ; Etiopathogenesis. Screening. Investigations. Target tissue resistance ; hypertension ; Hypertension - drug therapy ; Hypertension - physiopathology ; indomethacin ; Male ; Medical sciences ; mesenteric arteries ; Mesenteric Arteries - drug effects ; Mesenteric Arteries - metabolism ; Metabolic diseases ; Mice ; Mice, Inbred C57BL ; Niacinamide - administration & dosage ; Niacinamide - analogs & derivatives ; Niacinamide - pharmacology ; nitric oxide ; nitroprusside ; noninsulin-dependent diabetes mellitus ; Obesity ; Obesity - drug therapy ; Obesity - physiopathology ; oral administration ; pathogenesis ; Pharmacology. Drug treatments ; phenylephrine ; Phenylurea Compounds - administration & dosage ; Phenylurea Compounds - pharmacology ; prostacyclin ; prostaglandin synthase ; Rats ; Rats, Sprague-Dawley ; Soluble epoxide hydrolase ; Urea - administration & dosage ; Urea - analogs & derivatives ; Urea - pharmacology ; vasodilation ; Vasodilation - drug effects]]></subject><ispartof>European journal of pharmacology, 2011-03, Vol.654 (1), p.68-74</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-80a2d1b6e79b56a4fa154f0638f2c11770aa2d94577de0e1fc85faeca4574acb3</citedby><cites>FETCH-LOGICAL-c481t-80a2d1b6e79b56a4fa154f0638f2c11770aa2d94577de0e1fc85faeca4574acb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0014299910012434$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23819643$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21187082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Le-Ning</creatorcontrib><creatorcontrib>Vincelette, Jon</creatorcontrib><creatorcontrib>Chen, Dawn</creatorcontrib><creatorcontrib>Gless, Richard D.</creatorcontrib><creatorcontrib>Anandan, Sampath-Kumar</creatorcontrib><creatorcontrib>Rubanyi, Gabor M.</creatorcontrib><creatorcontrib>Webb, Heather K.</creatorcontrib><creatorcontrib>MacIntyre, D. Euan</creatorcontrib><creatorcontrib>Wang, Yi-Xin (Jim)</creatorcontrib><title>Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension</title><title>European journal of pharmacology</title><addtitle>Eur J Pharmacol</addtitle><description>Endothelial dysfunction is a hallmark of, and plays a pivotal role in the pathogenesis of cardiometabolic diseases, including type II diabetes, obesity, and hypertension. It has been well established that epoxyeicosatrienoic acids (EETs) act as an endothelial derived hyperpolarization factor (EDHF). Soluble epoxide hydrolase (s-EH) rapidly hydrolyses certain epoxylipids (e.g. EETs) to less bioactive diols (DHETs), thereby attenuating the evoked vasodilator effects. The aim of the present study was to examine if inhibition of s-EH can restore impaired endothelial function in three animal models of cardiometabolic diseases. Isolated vessel rings of the aorta and/or mesenteric artery from mice or rats were pre-contracted using phenylephrine or U46619. Endothelium-dependent and independent vasorelaxation to acetylcholine and sodium nitroprusside (SNP) were measured using wire myography in vessels isolated from db/db or diet-induced obesity (DIO) mice, and angiotensin II-induced hypertensive rats treated chronically with s-EH inhibitors AR9281 or AR9276 or with vehicle. Vasorelaxation to acetylcholine, but not to SNP was severely impaired in all three animal models. Oral administration of AR9281 or AR9276 abolished whole blood s-EH activity, elevated epoxy/diol lipid ratio, and abrogated endothelial dysfunction in all three models. Incubating the mesenteric artery of db/db mice with L-NAME and indomethacin to block nitric oxide (NO) and prostacyclin formation did not affect AR9821-induced improvement of endothelial function. These data indicate that inhibition of s-EH ameliorates endothelial dysfunction and that effects in the db/db model are independent of the presence of NO and cyclooxygenase derived prostanoids. Thus, preserving vasodilator EETs by inhibition of s-EH may be of therapeutic benefit by improving endothelial function in cardiometabolic diseases.</description><subject>acetylcholine</subject><subject>Adamantane - administration &amp; dosage</subject><subject>Adamantane - analogs &amp; derivatives</subject><subject>Adamantane - pharmacology</subject><subject>Administration, Oral</subject><subject>animal models</subject><subject>Animals</subject><subject>aorta</subject><subject>Aorta - drug effects</subject><subject>Aorta - metabolism</subject><subject>Arterial hypertension. Arterial hypotension</subject><subject>bioactive properties</subject><subject>Biological and medical sciences</subject><subject>blood</subject><subject>Blood and lymphatic vessels</subject><subject>Cardiology. Vascular system</subject><subject>Cardiometabolic diseases</subject><subject>Diabetes Mellitus, Experimental - drug therapy</subject><subject>Diabetes Mellitus, Experimental - physiopathology</subject><subject>Diabetes Mellitus, Type 2 - drug therapy</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Diabetes. Impaired glucose tolerance</subject><subject>Disease Models, Animal</subject><subject>Endocrine pancreas. Apud cells (diseases)</subject><subject>Endocrinopathies</subject><subject>Endothelial derived hyperpolarization factors</subject><subject>Endothelial dysfunction</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - pathology</subject><subject>epoxide hydrolase</subject><subject>Epoxide Hydrolases - antagonists &amp; inhibitors</subject><subject>Epoxide Hydrolases - metabolism</subject><subject>epoxides</subject><subject>Epoxyeicosatrienoic acids</subject><subject>Etiopathogenesis. Screening. Investigations. Target tissue resistance</subject><subject>hypertension</subject><subject>Hypertension - drug therapy</subject><subject>Hypertension - physiopathology</subject><subject>indomethacin</subject><subject>Male</subject><subject>Medical sciences</subject><subject>mesenteric arteries</subject><subject>Mesenteric Arteries - drug effects</subject><subject>Mesenteric Arteries - metabolism</subject><subject>Metabolic diseases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Niacinamide - administration &amp; dosage</subject><subject>Niacinamide - analogs &amp; derivatives</subject><subject>Niacinamide - pharmacology</subject><subject>nitric oxide</subject><subject>nitroprusside</subject><subject>noninsulin-dependent diabetes mellitus</subject><subject>Obesity</subject><subject>Obesity - drug therapy</subject><subject>Obesity - physiopathology</subject><subject>oral administration</subject><subject>pathogenesis</subject><subject>Pharmacology. Drug treatments</subject><subject>phenylephrine</subject><subject>Phenylurea Compounds - administration &amp; dosage</subject><subject>Phenylurea Compounds - pharmacology</subject><subject>prostacyclin</subject><subject>prostaglandin synthase</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Soluble epoxide hydrolase</subject><subject>Urea - administration &amp; dosage</subject><subject>Urea - analogs &amp; derivatives</subject><subject>Urea - pharmacology</subject><subject>vasodilation</subject><subject>Vasodilation - drug effects</subject><issn>0014-2999</issn><issn>1879-0712</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMoTs_oPxCtjbix2iT1SjaCDD4GBlzorMOt5MZOk07apGqwl_5zU1arO1eBw3fOvfeEkGeMbhll_Zv9FvfHHaQtp4vEt0V8QDZMDLKmA-MPyYZS1tZcSnlBLnPeU0o7ybvH5IKzglHBN-TnTdi50U0uhiraKkc_jx4rPMYfzmC1O5kUPWSsYJowzDBhrjCYOO3QO_CVOWU7B_3b70IFwR2KeogGfV4CjYMRi-l1FUfMbjoVxJTYI6aSl4vtCXlkwWd8en6vyN2H91-vP9W3nz_eXL-7rXUr2FQLCtywscdBjl0PrQXWtZb2jbBcMzYMFAog224YDFJkVovOAmooSgt6bK7IqzX3mOL3GfOkDi5r9B4Cxjkr0Q5c9LyThWxXUqeYc0KrjqmclU6KUbV0r_Zq7V4t3SvGVRGL7fl5wDwe0Pw1_Sm7AC_PAGQN3iYI2uV_XCOY7NumcC9WzkJU8C0V5u5LmdSVD2ykFMuGb1eitIz3DpPK2mHQaFxCPSkT3f93_QVhA7DH</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Zhang, Le-Ning</creator><creator>Vincelette, Jon</creator><creator>Chen, Dawn</creator><creator>Gless, Richard D.</creator><creator>Anandan, Sampath-Kumar</creator><creator>Rubanyi, Gabor M.</creator><creator>Webb, Heather K.</creator><creator>MacIntyre, D. Euan</creator><creator>Wang, Yi-Xin (Jim)</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110301</creationdate><title>Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension</title><author>Zhang, Le-Ning ; Vincelette, Jon ; Chen, Dawn ; Gless, Richard D. ; Anandan, Sampath-Kumar ; Rubanyi, Gabor M. ; Webb, Heather K. ; MacIntyre, D. Euan ; Wang, Yi-Xin (Jim)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-80a2d1b6e79b56a4fa154f0638f2c11770aa2d94577de0e1fc85faeca4574acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>acetylcholine</topic><topic>Adamantane - administration &amp; dosage</topic><topic>Adamantane - analogs &amp; derivatives</topic><topic>Adamantane - pharmacology</topic><topic>Administration, Oral</topic><topic>animal models</topic><topic>Animals</topic><topic>aorta</topic><topic>Aorta - drug effects</topic><topic>Aorta - metabolism</topic><topic>Arterial hypertension. Arterial hypotension</topic><topic>bioactive properties</topic><topic>Biological and medical sciences</topic><topic>blood</topic><topic>Blood and lymphatic vessels</topic><topic>Cardiology. Vascular system</topic><topic>Cardiometabolic diseases</topic><topic>Diabetes Mellitus, Experimental - drug therapy</topic><topic>Diabetes Mellitus, Experimental - physiopathology</topic><topic>Diabetes Mellitus, Type 2 - drug therapy</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Diabetes. Impaired glucose tolerance</topic><topic>Disease Models, Animal</topic><topic>Endocrine pancreas. Apud cells (diseases)</topic><topic>Endocrinopathies</topic><topic>Endothelial derived hyperpolarization factors</topic><topic>Endothelial dysfunction</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - pathology</topic><topic>epoxide hydrolase</topic><topic>Epoxide Hydrolases - antagonists &amp; inhibitors</topic><topic>Epoxide Hydrolases - metabolism</topic><topic>epoxides</topic><topic>Epoxyeicosatrienoic acids</topic><topic>Etiopathogenesis. Screening. Investigations. Target tissue resistance</topic><topic>hypertension</topic><topic>Hypertension - drug therapy</topic><topic>Hypertension - physiopathology</topic><topic>indomethacin</topic><topic>Male</topic><topic>Medical sciences</topic><topic>mesenteric arteries</topic><topic>Mesenteric Arteries - drug effects</topic><topic>Mesenteric Arteries - metabolism</topic><topic>Metabolic diseases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Niacinamide - administration &amp; dosage</topic><topic>Niacinamide - analogs &amp; derivatives</topic><topic>Niacinamide - pharmacology</topic><topic>nitric oxide</topic><topic>nitroprusside</topic><topic>noninsulin-dependent diabetes mellitus</topic><topic>Obesity</topic><topic>Obesity - drug therapy</topic><topic>Obesity - physiopathology</topic><topic>oral administration</topic><topic>pathogenesis</topic><topic>Pharmacology. Drug treatments</topic><topic>phenylephrine</topic><topic>Phenylurea Compounds - administration &amp; dosage</topic><topic>Phenylurea Compounds - pharmacology</topic><topic>prostacyclin</topic><topic>prostaglandin synthase</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Soluble epoxide hydrolase</topic><topic>Urea - administration &amp; dosage</topic><topic>Urea - analogs &amp; derivatives</topic><topic>Urea - pharmacology</topic><topic>vasodilation</topic><topic>Vasodilation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Le-Ning</creatorcontrib><creatorcontrib>Vincelette, Jon</creatorcontrib><creatorcontrib>Chen, Dawn</creatorcontrib><creatorcontrib>Gless, Richard D.</creatorcontrib><creatorcontrib>Anandan, Sampath-Kumar</creatorcontrib><creatorcontrib>Rubanyi, Gabor M.</creatorcontrib><creatorcontrib>Webb, Heather K.</creatorcontrib><creatorcontrib>MacIntyre, D. Euan</creatorcontrib><creatorcontrib>Wang, Yi-Xin (Jim)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Le-Ning</au><au>Vincelette, Jon</au><au>Chen, Dawn</au><au>Gless, Richard D.</au><au>Anandan, Sampath-Kumar</au><au>Rubanyi, Gabor M.</au><au>Webb, Heather K.</au><au>MacIntyre, D. Euan</au><au>Wang, Yi-Xin (Jim)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension</atitle><jtitle>European journal of pharmacology</jtitle><addtitle>Eur J Pharmacol</addtitle><date>2011-03-01</date><risdate>2011</risdate><volume>654</volume><issue>1</issue><spage>68</spage><epage>74</epage><pages>68-74</pages><issn>0014-2999</issn><eissn>1879-0712</eissn><coden>EJPHAZ</coden><abstract>Endothelial dysfunction is a hallmark of, and plays a pivotal role in the pathogenesis of cardiometabolic diseases, including type II diabetes, obesity, and hypertension. It has been well established that epoxyeicosatrienoic acids (EETs) act as an endothelial derived hyperpolarization factor (EDHF). Soluble epoxide hydrolase (s-EH) rapidly hydrolyses certain epoxylipids (e.g. EETs) to less bioactive diols (DHETs), thereby attenuating the evoked vasodilator effects. The aim of the present study was to examine if inhibition of s-EH can restore impaired endothelial function in three animal models of cardiometabolic diseases. Isolated vessel rings of the aorta and/or mesenteric artery from mice or rats were pre-contracted using phenylephrine or U46619. Endothelium-dependent and independent vasorelaxation to acetylcholine and sodium nitroprusside (SNP) were measured using wire myography in vessels isolated from db/db or diet-induced obesity (DIO) mice, and angiotensin II-induced hypertensive rats treated chronically with s-EH inhibitors AR9281 or AR9276 or with vehicle. Vasorelaxation to acetylcholine, but not to SNP was severely impaired in all three animal models. Oral administration of AR9281 or AR9276 abolished whole blood s-EH activity, elevated epoxy/diol lipid ratio, and abrogated endothelial dysfunction in all three models. Incubating the mesenteric artery of db/db mice with L-NAME and indomethacin to block nitric oxide (NO) and prostacyclin formation did not affect AR9821-induced improvement of endothelial function. These data indicate that inhibition of s-EH ameliorates endothelial dysfunction and that effects in the db/db model are independent of the presence of NO and cyclooxygenase derived prostanoids. Thus, preserving vasodilator EETs by inhibition of s-EH may be of therapeutic benefit by improving endothelial function in cardiometabolic diseases.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>21187082</pmid><doi>10.1016/j.ejphar.2010.12.016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-2999
ispartof European journal of pharmacology, 2011-03, Vol.654 (1), p.68-74
issn 0014-2999
1879-0712
language eng
recordid cdi_proquest_miscellaneous_847286259
source MEDLINE; Elsevier ScienceDirect Journals
subjects acetylcholine
Adamantane - administration & dosage
Adamantane - analogs & derivatives
Adamantane - pharmacology
Administration, Oral
animal models
Animals
aorta
Aorta - drug effects
Aorta - metabolism
Arterial hypertension. Arterial hypotension
bioactive properties
Biological and medical sciences
blood
Blood and lymphatic vessels
Cardiology. Vascular system
Cardiometabolic diseases
Diabetes Mellitus, Experimental - drug therapy
Diabetes Mellitus, Experimental - physiopathology
Diabetes Mellitus, Type 2 - drug therapy
Diabetes Mellitus, Type 2 - physiopathology
Diabetes. Impaired glucose tolerance
Disease Models, Animal
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Endothelial derived hyperpolarization factors
Endothelial dysfunction
Endothelium, Vascular - drug effects
Endothelium, Vascular - pathology
epoxide hydrolase
Epoxide Hydrolases - antagonists & inhibitors
Epoxide Hydrolases - metabolism
epoxides
Epoxyeicosatrienoic acids
Etiopathogenesis. Screening. Investigations. Target tissue resistance
hypertension
Hypertension - drug therapy
Hypertension - physiopathology
indomethacin
Male
Medical sciences
mesenteric arteries
Mesenteric Arteries - drug effects
Mesenteric Arteries - metabolism
Metabolic diseases
Mice
Mice, Inbred C57BL
Niacinamide - administration & dosage
Niacinamide - analogs & derivatives
Niacinamide - pharmacology
nitric oxide
nitroprusside
noninsulin-dependent diabetes mellitus
Obesity
Obesity - drug therapy
Obesity - physiopathology
oral administration
pathogenesis
Pharmacology. Drug treatments
phenylephrine
Phenylurea Compounds - administration & dosage
Phenylurea Compounds - pharmacology
prostacyclin
prostaglandin synthase
Rats
Rats, Sprague-Dawley
Soluble epoxide hydrolase
Urea - administration & dosage
Urea - analogs & derivatives
Urea - pharmacology
vasodilation
Vasodilation - drug effects
title Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A11%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20soluble%20epoxide%20hydrolase%20attenuates%20endothelial%20dysfunction%20in%20animal%20models%20of%20diabetes,%20obesity%20and%20hypertension&rft.jtitle=European%20journal%20of%20pharmacology&rft.au=Zhang,%20Le-Ning&rft.date=2011-03-01&rft.volume=654&rft.issue=1&rft.spage=68&rft.epage=74&rft.pages=68-74&rft.issn=0014-2999&rft.eissn=1879-0712&rft.coden=EJPHAZ&rft_id=info:doi/10.1016/j.ejphar.2010.12.016&rft_dat=%3Cproquest_cross%3E847286259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847286259&rft_id=info:pmid/21187082&rft_els_id=S0014299910012434&rfr_iscdi=true