Reinforcement Learning: A Novel Method for Optimal Control of Propofol-Induced Hypnosis

Reinforcement learning (RL) is an intelligent systems technique with a history of success in difficult robotic control problems. Similar machine learning techniques, such as artificial neural networks and fuzzy logic, have been successfully applied to clinical control problems. Although RL presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and analgesia 2011-02, Vol.112 (2), p.360-367
Hauptverfasser: Moore, Brett L., Doufas, Anthony G., Pyeatt, Larry D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 2
container_start_page 360
container_title Anesthesia and analgesia
container_volume 112
creator Moore, Brett L.
Doufas, Anthony G.
Pyeatt, Larry D.
description Reinforcement learning (RL) is an intelligent systems technique with a history of success in difficult robotic control problems. Similar machine learning techniques, such as artificial neural networks and fuzzy logic, have been successfully applied to clinical control problems. Although RL presents a mathematically robust method of achieving optimal control in systems challenged with noise, nonlinearity, time delay, and uncertainty, no application of RL in clinical anesthesia has been reported.
doi_str_mv 10.1213/ANE.0b013e31820334a7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_847279397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>847279397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3303-d2277f45722e9e8327412fc1033d1efbc166cd11e7c861f9da198725203a3ac93</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1ERbeFf4CQL4hTWo-dxDG31aq0lZa2QiCOltcZswGvHeyEqv8er7oUqXMZjfTMx_sOIW-BnQEHcb68uThjGwYCBXScCVEb-YIsoOFtJRvVvSQLxpiouFLqmJzk_LOUwLr2FTnmAE2runpBvn_BIbiYLO4wTHSNJoUh_PhIl_Qm_kFPP-O0jT0tCL0dp2FnPF3FMKXoaXT0LsUxuuir69DPFnt69TCGmIf8mhw54zO-OeRT8u3TxdfVVbW-vbxeLdeVFaIc13MupasbyTkq7ASXNXBnocjpAd3GQtvaHgCl7VpwqjegOsmbotcIY5U4JR8e544p_p4xT3o3ZIvem4BxzrqrJZdKKFnI-pG0Keac0OkxFTnpQQPTe0d1cVQ_d7S0vTssmDc77J-a_llYgPcHwGRrvEsm2CH_54RUAEXQ0_776CdM-Zef7zHpLRo_bTXbRyNUxVmBeSmq_buE-Av7VI1v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>847279397</pqid></control><display><type>article</type><title>Reinforcement Learning: A Novel Method for Optimal Control of Propofol-Induced Hypnosis</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Moore, Brett L. ; Doufas, Anthony G. ; Pyeatt, Larry D.</creator><creatorcontrib>Moore, Brett L. ; Doufas, Anthony G. ; Pyeatt, Larry D.</creatorcontrib><description>Reinforcement learning (RL) is an intelligent systems technique with a history of success in difficult robotic control problems. Similar machine learning techniques, such as artificial neural networks and fuzzy logic, have been successfully applied to clinical control problems. Although RL presents a mathematically robust method of achieving optimal control in systems challenged with noise, nonlinearity, time delay, and uncertainty, no application of RL in clinical anesthesia has been reported.</description><identifier>ISSN: 0003-2999</identifier><identifier>EISSN: 1526-7598</identifier><identifier>DOI: 10.1213/ANE.0b013e31820334a7</identifier><identifier>PMID: 21156984</identifier><identifier>CODEN: AACRAT</identifier><language>eng</language><publisher>Hagerstown, MD: International Anesthesia Research Society</publisher><subject>Anesthesia ; Anesthesia, Closed-Circuit ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Anesthetics, Intravenous - administration &amp; dosage ; Anesthetics, Intravenous - pharmacokinetics ; Artificial Intelligence ; Biological and medical sciences ; Consciousness Monitors ; Dose-Response Relationship, Drug ; Humans ; Hypnosis, Anesthetic ; Intraoperative Period ; Medical sciences ; Models, Theoretical ; Monitoring, Intraoperative - instrumentation ; Monitoring, Intraoperative - methods ; Pattern Recognition, Automated ; Propofol - administration &amp; dosage ; Propofol - pharmacokinetics ; Signal Processing, Computer-Assisted</subject><ispartof>Anesthesia and analgesia, 2011-02, Vol.112 (2), p.360-367</ispartof><rights>International Anesthesia Research Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3303-d2277f45722e9e8327412fc1033d1efbc166cd11e7c861f9da198725203a3ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&amp;NEWS=n&amp;CSC=Y&amp;PAGE=fulltext&amp;D=ovft&amp;AN=00000539-201102000-00013$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>314,776,780,4595,27901,27902,65434</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23791110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21156984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, Brett L.</creatorcontrib><creatorcontrib>Doufas, Anthony G.</creatorcontrib><creatorcontrib>Pyeatt, Larry D.</creatorcontrib><title>Reinforcement Learning: A Novel Method for Optimal Control of Propofol-Induced Hypnosis</title><title>Anesthesia and analgesia</title><addtitle>Anesth Analg</addtitle><description>Reinforcement learning (RL) is an intelligent systems technique with a history of success in difficult robotic control problems. Similar machine learning techniques, such as artificial neural networks and fuzzy logic, have been successfully applied to clinical control problems. Although RL presents a mathematically robust method of achieving optimal control in systems challenged with noise, nonlinearity, time delay, and uncertainty, no application of RL in clinical anesthesia has been reported.</description><subject>Anesthesia</subject><subject>Anesthesia, Closed-Circuit</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Anesthetics, Intravenous - administration &amp; dosage</subject><subject>Anesthetics, Intravenous - pharmacokinetics</subject><subject>Artificial Intelligence</subject><subject>Biological and medical sciences</subject><subject>Consciousness Monitors</subject><subject>Dose-Response Relationship, Drug</subject><subject>Humans</subject><subject>Hypnosis, Anesthetic</subject><subject>Intraoperative Period</subject><subject>Medical sciences</subject><subject>Models, Theoretical</subject><subject>Monitoring, Intraoperative - instrumentation</subject><subject>Monitoring, Intraoperative - methods</subject><subject>Pattern Recognition, Automated</subject><subject>Propofol - administration &amp; dosage</subject><subject>Propofol - pharmacokinetics</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0003-2999</issn><issn>1526-7598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi1ERbeFf4CQL4hTWo-dxDG31aq0lZa2QiCOltcZswGvHeyEqv8er7oUqXMZjfTMx_sOIW-BnQEHcb68uThjGwYCBXScCVEb-YIsoOFtJRvVvSQLxpiouFLqmJzk_LOUwLr2FTnmAE2runpBvn_BIbiYLO4wTHSNJoUh_PhIl_Qm_kFPP-O0jT0tCL0dp2FnPF3FMKXoaXT0LsUxuuir69DPFnt69TCGmIf8mhw54zO-OeRT8u3TxdfVVbW-vbxeLdeVFaIc13MupasbyTkq7ASXNXBnocjpAd3GQtvaHgCl7VpwqjegOsmbotcIY5U4JR8e544p_p4xT3o3ZIvem4BxzrqrJZdKKFnI-pG0Keac0OkxFTnpQQPTe0d1cVQ_d7S0vTssmDc77J-a_llYgPcHwGRrvEsm2CH_54RUAEXQ0_776CdM-Zef7zHpLRo_bTXbRyNUxVmBeSmq_buE-Av7VI1v</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Moore, Brett L.</creator><creator>Doufas, Anthony G.</creator><creator>Pyeatt, Larry D.</creator><general>International Anesthesia Research Society</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110201</creationdate><title>Reinforcement Learning: A Novel Method for Optimal Control of Propofol-Induced Hypnosis</title><author>Moore, Brett L. ; Doufas, Anthony G. ; Pyeatt, Larry D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3303-d2277f45722e9e8327412fc1033d1efbc166cd11e7c861f9da198725203a3ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Anesthesia</topic><topic>Anesthesia, Closed-Circuit</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Anesthetics, Intravenous - administration &amp; dosage</topic><topic>Anesthetics, Intravenous - pharmacokinetics</topic><topic>Artificial Intelligence</topic><topic>Biological and medical sciences</topic><topic>Consciousness Monitors</topic><topic>Dose-Response Relationship, Drug</topic><topic>Humans</topic><topic>Hypnosis, Anesthetic</topic><topic>Intraoperative Period</topic><topic>Medical sciences</topic><topic>Models, Theoretical</topic><topic>Monitoring, Intraoperative - instrumentation</topic><topic>Monitoring, Intraoperative - methods</topic><topic>Pattern Recognition, Automated</topic><topic>Propofol - administration &amp; dosage</topic><topic>Propofol - pharmacokinetics</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, Brett L.</creatorcontrib><creatorcontrib>Doufas, Anthony G.</creatorcontrib><creatorcontrib>Pyeatt, Larry D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Anesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, Brett L.</au><au>Doufas, Anthony G.</au><au>Pyeatt, Larry D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning: A Novel Method for Optimal Control of Propofol-Induced Hypnosis</atitle><jtitle>Anesthesia and analgesia</jtitle><addtitle>Anesth Analg</addtitle><date>2011-02-01</date><risdate>2011</risdate><volume>112</volume><issue>2</issue><spage>360</spage><epage>367</epage><pages>360-367</pages><issn>0003-2999</issn><eissn>1526-7598</eissn><coden>AACRAT</coden><abstract>Reinforcement learning (RL) is an intelligent systems technique with a history of success in difficult robotic control problems. Similar machine learning techniques, such as artificial neural networks and fuzzy logic, have been successfully applied to clinical control problems. Although RL presents a mathematically robust method of achieving optimal control in systems challenged with noise, nonlinearity, time delay, and uncertainty, no application of RL in clinical anesthesia has been reported.</abstract><cop>Hagerstown, MD</cop><pub>International Anesthesia Research Society</pub><pmid>21156984</pmid><doi>10.1213/ANE.0b013e31820334a7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2999
ispartof Anesthesia and analgesia, 2011-02, Vol.112 (2), p.360-367
issn 0003-2999
1526-7598
language eng
recordid cdi_proquest_miscellaneous_847279397
source MEDLINE; Journals@Ovid LWW Legacy Archive; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anesthesia
Anesthesia, Closed-Circuit
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Anesthetics, Intravenous - administration & dosage
Anesthetics, Intravenous - pharmacokinetics
Artificial Intelligence
Biological and medical sciences
Consciousness Monitors
Dose-Response Relationship, Drug
Humans
Hypnosis, Anesthetic
Intraoperative Period
Medical sciences
Models, Theoretical
Monitoring, Intraoperative - instrumentation
Monitoring, Intraoperative - methods
Pattern Recognition, Automated
Propofol - administration & dosage
Propofol - pharmacokinetics
Signal Processing, Computer-Assisted
title Reinforcement Learning: A Novel Method for Optimal Control of Propofol-Induced Hypnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A30%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning:%20A%20Novel%20Method%20for%20Optimal%20Control%20of%20Propofol-Induced%20Hypnosis&rft.jtitle=Anesthesia%20and%20analgesia&rft.au=Moore,%20Brett%20L.&rft.date=2011-02-01&rft.volume=112&rft.issue=2&rft.spage=360&rft.epage=367&rft.pages=360-367&rft.issn=0003-2999&rft.eissn=1526-7598&rft.coden=AACRAT&rft_id=info:doi/10.1213/ANE.0b013e31820334a7&rft_dat=%3Cproquest_cross%3E847279397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=847279397&rft_id=info:pmid/21156984&rfr_iscdi=true