A transmissive laser speckle imaging technique for measuring deep tissue blood flow: An example application in finger joints

Background and Objective Laser speckle perfusion imaging (LSPI) is a minimally invasive optical measure of relative changes in blood flow, providing real‐time, high resolution, two‐dimensional maps of vascular structure. Standard LSI imaging uses a light‐reflective geometry that limits the measureme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in surgery and medicine 2011-01, Vol.43 (1), p.21-28
Hauptverfasser: Dunn, J.F., Forrester, K.R., Martin, L., Tulip, J., Bray, R.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 21
container_title Lasers in surgery and medicine
container_volume 43
creator Dunn, J.F.
Forrester, K.R.
Martin, L.
Tulip, J.
Bray, R.C.
description Background and Objective Laser speckle perfusion imaging (LSPI) is a minimally invasive optical measure of relative changes in blood flow, providing real‐time, high resolution, two‐dimensional maps of vascular structure. Standard LSI imaging uses a light‐reflective geometry that limits the measurement to a thin surface layer of 0.2–1 mm. The objective of this study was to test a new LSI instrument geometry with the laser source opposed to the image capture plane (light transmissive). Captured light then travels the entire tissue thickness (10–15 mm), sampling much deeper regions of interest than conventional optical imaging techniques. Study Design Reflective‐light (conventional) and transmissive‐light LSI modes were used to measure finger joint blood flow during a timed tourniquet occlusion of the brachial artery in volunteer participants. Results There was greatly increased visibility of vessels underlying the skin in the light‐transmissive mode LSI mode. Established LSI algorithms were shown to still work in the light‐transmissive mode, despite decorrelation due to finite laser coherence length and the light passing through a tissue thickness of 10–15 mm. Conclusion Transmissive LSI can be used to measure blood flow deep (10–15 mm) into tissues. This could be useful for non‐invasive measurements of finger joint synovial blood flow in diagnosing and treating peripheral vascular disorders, such as rheumatoid arthritis. Lasers Surg. Med. 43:21–28, 2011. © 2011 Wiley‐Liss, Inc.
doi_str_mv 10.1002/lsm.21018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_846902312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017959892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4618-d65e0a2b03ac7deb270508459e96b5cbe058b007a05c93bb9a93a691f96e6fae3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZeWA38A-QYc0o7tjRNzW1WwIHbbAwWOluNMilsnTu0sbSV-PF627Y2ePPZ871kzj5DXDI4YAD_2qT_iDFj9jMwYKFmofHlOZsByXYPi--RlSpcAIDhUL8g-Z7ycM6Fm5M-CTtEMqXcpud9IvUkYaRrRXnmkrjcXbrigE9pfg7veIO1CpD2atInb9xZxpFOW5k7jQ2hp58PNB7oYKN6afswWZhy9s2ZyYaBuoF2W5Q8ugxumdEj2OuMTvro_D8j3Tx_PTz4Xq7Pll5PFqrBzyeqilSWC4Q0IY6sWG15BCfW8VKhkU9oGoawbgMpAaZVoGmWUMFKxTkmUnUFxQN7ufMcY8hBp0nlci96bAcMm6XouFXDBeCbfPUnmvVaqVLXaou93qI0hpYidHmPeV7zLkN7GonMs-l8smX1zb7tpemwfyYccMnC8A26cx7v_O-nVt_WDZbFTuDTh7aPCxCstK1GV-ufpUp-q5df1-Rr0D_EX4ranuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017959892</pqid></control><display><type>article</type><title>A transmissive laser speckle imaging technique for measuring deep tissue blood flow: An example application in finger joints</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Dunn, J.F. ; Forrester, K.R. ; Martin, L. ; Tulip, J. ; Bray, R.C.</creator><creatorcontrib>Dunn, J.F. ; Forrester, K.R. ; Martin, L. ; Tulip, J. ; Bray, R.C.</creatorcontrib><description>Background and Objective Laser speckle perfusion imaging (LSPI) is a minimally invasive optical measure of relative changes in blood flow, providing real‐time, high resolution, two‐dimensional maps of vascular structure. Standard LSI imaging uses a light‐reflective geometry that limits the measurement to a thin surface layer of 0.2–1 mm. The objective of this study was to test a new LSI instrument geometry with the laser source opposed to the image capture plane (light transmissive). Captured light then travels the entire tissue thickness (10–15 mm), sampling much deeper regions of interest than conventional optical imaging techniques. Study Design Reflective‐light (conventional) and transmissive‐light LSI modes were used to measure finger joint blood flow during a timed tourniquet occlusion of the brachial artery in volunteer participants. Results There was greatly increased visibility of vessels underlying the skin in the light‐transmissive mode LSI mode. Established LSI algorithms were shown to still work in the light‐transmissive mode, despite decorrelation due to finite laser coherence length and the light passing through a tissue thickness of 10–15 mm. Conclusion Transmissive LSI can be used to measure blood flow deep (10–15 mm) into tissues. This could be useful for non‐invasive measurements of finger joint synovial blood flow in diagnosing and treating peripheral vascular disorders, such as rheumatoid arthritis. Lasers Surg. Med. 43:21–28, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 0196-8092</identifier><identifier>ISSN: 1096-9101</identifier><identifier>EISSN: 1096-9101</identifier><identifier>DOI: 10.1002/lsm.21018</identifier><identifier>PMID: 21254139</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Arteries ; blood flow ; Finger ; Finger Joint - blood supply ; Humans ; imaging ; Joint diseases ; laser ; Lasers ; Light effects ; Occlusion ; Perfusion ; Regional Blood Flow ; Rheumatoid arthritis ; Sampling ; Skin ; speckle ; synovial ; Travel</subject><ispartof>Lasers in surgery and medicine, 2011-01, Vol.43 (1), p.21-28</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4618-d65e0a2b03ac7deb270508459e96b5cbe058b007a05c93bb9a93a691f96e6fae3</citedby><cites>FETCH-LOGICAL-c4618-d65e0a2b03ac7deb270508459e96b5cbe058b007a05c93bb9a93a691f96e6fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flsm.21018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flsm.21018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21254139$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunn, J.F.</creatorcontrib><creatorcontrib>Forrester, K.R.</creatorcontrib><creatorcontrib>Martin, L.</creatorcontrib><creatorcontrib>Tulip, J.</creatorcontrib><creatorcontrib>Bray, R.C.</creatorcontrib><title>A transmissive laser speckle imaging technique for measuring deep tissue blood flow: An example application in finger joints</title><title>Lasers in surgery and medicine</title><addtitle>Lasers Surg. Med</addtitle><description>Background and Objective Laser speckle perfusion imaging (LSPI) is a minimally invasive optical measure of relative changes in blood flow, providing real‐time, high resolution, two‐dimensional maps of vascular structure. Standard LSI imaging uses a light‐reflective geometry that limits the measurement to a thin surface layer of 0.2–1 mm. The objective of this study was to test a new LSI instrument geometry with the laser source opposed to the image capture plane (light transmissive). Captured light then travels the entire tissue thickness (10–15 mm), sampling much deeper regions of interest than conventional optical imaging techniques. Study Design Reflective‐light (conventional) and transmissive‐light LSI modes were used to measure finger joint blood flow during a timed tourniquet occlusion of the brachial artery in volunteer participants. Results There was greatly increased visibility of vessels underlying the skin in the light‐transmissive mode LSI mode. Established LSI algorithms were shown to still work in the light‐transmissive mode, despite decorrelation due to finite laser coherence length and the light passing through a tissue thickness of 10–15 mm. Conclusion Transmissive LSI can be used to measure blood flow deep (10–15 mm) into tissues. This could be useful for non‐invasive measurements of finger joint synovial blood flow in diagnosing and treating peripheral vascular disorders, such as rheumatoid arthritis. Lasers Surg. Med. 43:21–28, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Arteries</subject><subject>blood flow</subject><subject>Finger</subject><subject>Finger Joint - blood supply</subject><subject>Humans</subject><subject>imaging</subject><subject>Joint diseases</subject><subject>laser</subject><subject>Lasers</subject><subject>Light effects</subject><subject>Occlusion</subject><subject>Perfusion</subject><subject>Regional Blood Flow</subject><subject>Rheumatoid arthritis</subject><subject>Sampling</subject><subject>Skin</subject><subject>speckle</subject><subject>synovial</subject><subject>Travel</subject><issn>0196-8092</issn><issn>1096-9101</issn><issn>1096-9101</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS1ERZeWA38A-QYc0o7tjRNzW1WwIHbbAwWOluNMilsnTu0sbSV-PF627Y2ePPZ871kzj5DXDI4YAD_2qT_iDFj9jMwYKFmofHlOZsByXYPi--RlSpcAIDhUL8g-Z7ycM6Fm5M-CTtEMqXcpud9IvUkYaRrRXnmkrjcXbrigE9pfg7veIO1CpD2atInb9xZxpFOW5k7jQ2hp58PNB7oYKN6afswWZhy9s2ZyYaBuoF2W5Q8ugxumdEj2OuMTvro_D8j3Tx_PTz4Xq7Pll5PFqrBzyeqilSWC4Q0IY6sWG15BCfW8VKhkU9oGoawbgMpAaZVoGmWUMFKxTkmUnUFxQN7ufMcY8hBp0nlci96bAcMm6XouFXDBeCbfPUnmvVaqVLXaou93qI0hpYidHmPeV7zLkN7GonMs-l8smX1zb7tpemwfyYccMnC8A26cx7v_O-nVt_WDZbFTuDTh7aPCxCstK1GV-ufpUp-q5df1-Rr0D_EX4ranuw</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Dunn, J.F.</creator><creator>Forrester, K.R.</creator><creator>Martin, L.</creator><creator>Tulip, J.</creator><creator>Bray, R.C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201101</creationdate><title>A transmissive laser speckle imaging technique for measuring deep tissue blood flow: An example application in finger joints</title><author>Dunn, J.F. ; Forrester, K.R. ; Martin, L. ; Tulip, J. ; Bray, R.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4618-d65e0a2b03ac7deb270508459e96b5cbe058b007a05c93bb9a93a691f96e6fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Arteries</topic><topic>blood flow</topic><topic>Finger</topic><topic>Finger Joint - blood supply</topic><topic>Humans</topic><topic>imaging</topic><topic>Joint diseases</topic><topic>laser</topic><topic>Lasers</topic><topic>Light effects</topic><topic>Occlusion</topic><topic>Perfusion</topic><topic>Regional Blood Flow</topic><topic>Rheumatoid arthritis</topic><topic>Sampling</topic><topic>Skin</topic><topic>speckle</topic><topic>synovial</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunn, J.F.</creatorcontrib><creatorcontrib>Forrester, K.R.</creatorcontrib><creatorcontrib>Martin, L.</creatorcontrib><creatorcontrib>Tulip, J.</creatorcontrib><creatorcontrib>Bray, R.C.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Lasers in surgery and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunn, J.F.</au><au>Forrester, K.R.</au><au>Martin, L.</au><au>Tulip, J.</au><au>Bray, R.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A transmissive laser speckle imaging technique for measuring deep tissue blood flow: An example application in finger joints</atitle><jtitle>Lasers in surgery and medicine</jtitle><addtitle>Lasers Surg. Med</addtitle><date>2011-01</date><risdate>2011</risdate><volume>43</volume><issue>1</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>0196-8092</issn><issn>1096-9101</issn><eissn>1096-9101</eissn><abstract>Background and Objective Laser speckle perfusion imaging (LSPI) is a minimally invasive optical measure of relative changes in blood flow, providing real‐time, high resolution, two‐dimensional maps of vascular structure. Standard LSI imaging uses a light‐reflective geometry that limits the measurement to a thin surface layer of 0.2–1 mm. The objective of this study was to test a new LSI instrument geometry with the laser source opposed to the image capture plane (light transmissive). Captured light then travels the entire tissue thickness (10–15 mm), sampling much deeper regions of interest than conventional optical imaging techniques. Study Design Reflective‐light (conventional) and transmissive‐light LSI modes were used to measure finger joint blood flow during a timed tourniquet occlusion of the brachial artery in volunteer participants. Results There was greatly increased visibility of vessels underlying the skin in the light‐transmissive mode LSI mode. Established LSI algorithms were shown to still work in the light‐transmissive mode, despite decorrelation due to finite laser coherence length and the light passing through a tissue thickness of 10–15 mm. Conclusion Transmissive LSI can be used to measure blood flow deep (10–15 mm) into tissues. This could be useful for non‐invasive measurements of finger joint synovial blood flow in diagnosing and treating peripheral vascular disorders, such as rheumatoid arthritis. Lasers Surg. Med. 43:21–28, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21254139</pmid><doi>10.1002/lsm.21018</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8092
ispartof Lasers in surgery and medicine, 2011-01, Vol.43 (1), p.21-28
issn 0196-8092
1096-9101
1096-9101
language eng
recordid cdi_proquest_miscellaneous_846902312
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Arteries
blood flow
Finger
Finger Joint - blood supply
Humans
imaging
Joint diseases
laser
Lasers
Light effects
Occlusion
Perfusion
Regional Blood Flow
Rheumatoid arthritis
Sampling
Skin
speckle
synovial
Travel
title A transmissive laser speckle imaging technique for measuring deep tissue blood flow: An example application in finger joints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20transmissive%20laser%20speckle%20imaging%20technique%20for%20measuring%20deep%20tissue%20blood%20flow:%20An%20example%20application%20in%20finger%20joints&rft.jtitle=Lasers%20in%20surgery%20and%20medicine&rft.au=Dunn,%20J.F.&rft.date=2011-01&rft.volume=43&rft.issue=1&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=0196-8092&rft.eissn=1096-9101&rft_id=info:doi/10.1002/lsm.21018&rft_dat=%3Cproquest_cross%3E1017959892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1017959892&rft_id=info:pmid/21254139&rfr_iscdi=true