A Rapid Test for the Poisson Distribution Using the Range

A rapid approximate test based on the range is presented as an alternative to the usual index of dispersion method for examining small samples for conformity to the Poisson distribution. Let X1, ⋯, Xkbe a sample of size k from a Poisson distribution. Then it is shown using a result of Johnson and Yo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1967-12, Vol.23 (4), p.685-692
Hauptverfasser: Pettigrew, Hugh M., Mohler, William C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 692
container_issue 4
container_start_page 685
container_title Biometrics
container_volume 23
creator Pettigrew, Hugh M.
Mohler, William C.
description A rapid approximate test based on the range is presented as an alternative to the usual index of dispersion method for examining small samples for conformity to the Poisson distribution. Let X1, ⋯, Xkbe a sample of size k from a Poisson distribution. Then it is shown using a result of Johnson and Young that the approximate percentiles Rpof the conditional distribution of R = max Xj- min Xj, given the sample mean X̄, are given by R$_p = \sqrt{\bar{X}}w_p$, where the wpare the percentiles of the distribution of w, the range of k independent unit normal variates. Graphical methods are presented which not only facilitate the application of the test but provide valuable insight into possible causes for deviation from the Poisson distribution. The procedures are applied to several examples.
doi_str_mv 10.2307/2528422
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_84668670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2528422</jstor_id><sourcerecordid>2528422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-35928bc84849f9a8cd17107bc9467228411258f264833b74cd493b6225f23a063</originalsourceid><addsrcrecordid>eNp1kE1Lw0AYhBdRaq3iLxByED1F3333I5uj1E8oKKUFb2Gz2dQtbbbuJgf_vdEGb56GYR6GYQg5p3CDDLJbFKg44gEZU8FpChzhkIwBQKaM0_djchLjure5AByRkQQFCGJM8rtkrneuShY2tkntQ9J-2OTNuxh9k9y72AZXdq3rzTK6ZvUbz3WzsqfkqNabaM8GnZDl48Ni-pzOXp9epnez1DAQbcpEjqo0iiue17lWpqIZhaw0OZcZ9qMpRaFqlFwxVmbcVDxnpUQUNTINkk3I1b53F_xn168sti4au9noxvouFopLqWQGPXi9B03wMQZbF7vgtjp8FRSKn5OK4aSevBgqu3Jrqz9ueKXPL_f5OrY-_FvzDdb6aIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>84668670</pqid></control><display><type>article</type><title>A Rapid Test for the Poisson Distribution Using the Range</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Pettigrew, Hugh M. ; Mohler, William C.</creator><creatorcontrib>Pettigrew, Hugh M. ; Mohler, William C.</creatorcontrib><description>A rapid approximate test based on the range is presented as an alternative to the usual index of dispersion method for examining small samples for conformity to the Poisson distribution. Let X1, ⋯, Xkbe a sample of size k from a Poisson distribution. Then it is shown using a result of Johnson and Young that the approximate percentiles Rpof the conditional distribution of R = max Xj- min Xj, given the sample mean X̄, are given by R$_p = \sqrt{\bar{X}}w_p$, where the wpare the percentiles of the distribution of w, the range of k independent unit normal variates. Graphical methods are presented which not only facilitate the application of the test but provide valuable insight into possible causes for deviation from the Poisson distribution. The procedures are applied to several examples.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.2307/2528422</identifier><identifier>PMID: 6080205</identifier><language>eng</language><publisher>United States: Biometric Society</publisher><subject>Approximation ; Bacteriology ; Biometrics ; Methods ; Probability ; Test ranges</subject><ispartof>Biometrics, 1967-12, Vol.23 (4), p.685-692</ispartof><rights>Copyright 1967 The Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-35928bc84849f9a8cd17107bc9467228411258f264833b74cd493b6225f23a063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2528422$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2528422$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6080205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pettigrew, Hugh M.</creatorcontrib><creatorcontrib>Mohler, William C.</creatorcontrib><title>A Rapid Test for the Poisson Distribution Using the Range</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>A rapid approximate test based on the range is presented as an alternative to the usual index of dispersion method for examining small samples for conformity to the Poisson distribution. Let X1, ⋯, Xkbe a sample of size k from a Poisson distribution. Then it is shown using a result of Johnson and Young that the approximate percentiles Rpof the conditional distribution of R = max Xj- min Xj, given the sample mean X̄, are given by R$_p = \sqrt{\bar{X}}w_p$, where the wpare the percentiles of the distribution of w, the range of k independent unit normal variates. Graphical methods are presented which not only facilitate the application of the test but provide valuable insight into possible causes for deviation from the Poisson distribution. The procedures are applied to several examples.</description><subject>Approximation</subject><subject>Bacteriology</subject><subject>Biometrics</subject><subject>Methods</subject><subject>Probability</subject><subject>Test ranges</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1Lw0AYhBdRaq3iLxByED1F3333I5uj1E8oKKUFb2Gz2dQtbbbuJgf_vdEGb56GYR6GYQg5p3CDDLJbFKg44gEZU8FpChzhkIwBQKaM0_djchLjure5AByRkQQFCGJM8rtkrneuShY2tkntQ9J-2OTNuxh9k9y72AZXdq3rzTK6ZvUbz3WzsqfkqNabaM8GnZDl48Ni-pzOXp9epnez1DAQbcpEjqo0iiue17lWpqIZhaw0OZcZ9qMpRaFqlFwxVmbcVDxnpUQUNTINkk3I1b53F_xn168sti4au9noxvouFopLqWQGPXi9B03wMQZbF7vgtjp8FRSKn5OK4aSevBgqu3Jrqz9ueKXPL_f5OrY-_FvzDdb6aIY</recordid><startdate>196712</startdate><enddate>196712</enddate><creator>Pettigrew, Hugh M.</creator><creator>Mohler, William C.</creator><general>Biometric Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>196712</creationdate><title>A Rapid Test for the Poisson Distribution Using the Range</title><author>Pettigrew, Hugh M. ; Mohler, William C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-35928bc84849f9a8cd17107bc9467228411258f264833b74cd493b6225f23a063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Approximation</topic><topic>Bacteriology</topic><topic>Biometrics</topic><topic>Methods</topic><topic>Probability</topic><topic>Test ranges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pettigrew, Hugh M.</creatorcontrib><creatorcontrib>Mohler, William C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pettigrew, Hugh M.</au><au>Mohler, William C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rapid Test for the Poisson Distribution Using the Range</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1967-12</date><risdate>1967</risdate><volume>23</volume><issue>4</issue><spage>685</spage><epage>692</epage><pages>685-692</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>A rapid approximate test based on the range is presented as an alternative to the usual index of dispersion method for examining small samples for conformity to the Poisson distribution. Let X1, ⋯, Xkbe a sample of size k from a Poisson distribution. Then it is shown using a result of Johnson and Young that the approximate percentiles Rpof the conditional distribution of R = max Xj- min Xj, given the sample mean X̄, are given by R$_p = \sqrt{\bar{X}}w_p$, where the wpare the percentiles of the distribution of w, the range of k independent unit normal variates. Graphical methods are presented which not only facilitate the application of the test but provide valuable insight into possible causes for deviation from the Poisson distribution. The procedures are applied to several examples.</abstract><cop>United States</cop><pub>Biometric Society</pub><pmid>6080205</pmid><doi>10.2307/2528422</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1967-12, Vol.23 (4), p.685-692
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_84668670
source MEDLINE; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Approximation
Bacteriology
Biometrics
Methods
Probability
Test ranges
title A Rapid Test for the Poisson Distribution Using the Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rapid%20Test%20for%20the%20Poisson%20Distribution%20Using%20the%20Range&rft.jtitle=Biometrics&rft.au=Pettigrew,%20Hugh%20M.&rft.date=1967-12&rft.volume=23&rft.issue=4&rft.spage=685&rft.epage=692&rft.pages=685-692&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.2307/2528422&rft_dat=%3Cjstor_proqu%3E2528422%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=84668670&rft_id=info:pmid/6080205&rft_jstor_id=2528422&rfr_iscdi=true