Hierarchical clustering schemes

Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 1967-09, Vol.32 (3), p.241-254
1. Verfasser: Johnson, S C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 254
container_issue 3
container_start_page 241
container_title Psychometrika
container_volume 32
creator Johnson, S C
description Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”
doi_str_mv 10.1007/BF02289588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_84623309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>84623309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYModa1evIsFwYOwOskku8mxFmuFghc9hzSd2C273Zp0D_57V1oUPL3Lx5t5H2OXHO45QPnwOAUhtFFaH7GM6wJyMBqOWQaAmCMXeMrOUloDgOFaD9hACZQlYMauZxVFF_2q8q4e-bpLO4rV5mOU_IoaSufsJLg60cUhh-x9-vQ2meXz1-eXyXiee1R8lxOVQSrkSyexVEZoJANGGb0gr5XHQFLqIHgZEJVXBrxA5yhoCIUCv8Ahu933bmP72VHa2aZKnurabajtktWyEIhgevDmH7huu7jpf7McQfa3sV89ZHd7ysc2pUjBbmPVuPhlOdgfZ_bPWQ9fHSq7RUPLX_QgCb8BhvhjYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304592300</pqid></control><display><type>article</type><title>Hierarchical clustering schemes</title><source>MEDLINE</source><source>Periodicals Index Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Johnson, S C</creator><creatorcontrib>Johnson, S C</creatorcontrib><description>Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02289588</identifier><identifier>PMID: 5234703</identifier><language>eng</language><publisher>United States: Psychometric Society, etc</publisher><subject>Computers ; Psychometrics</subject><ispartof>Psychometrika, 1967-09, Vol.32 (3), p.241-254</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</citedby><cites>FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27852,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/5234703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, S C</creatorcontrib><title>Hierarchical clustering schemes</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><description>Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”</description><subject>Computers</subject><subject>Psychometrics</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNpdkEFLAzEQhYModa1evIsFwYOwOskku8mxFmuFghc9hzSd2C273Zp0D_57V1oUPL3Lx5t5H2OXHO45QPnwOAUhtFFaH7GM6wJyMBqOWQaAmCMXeMrOUloDgOFaD9hACZQlYMauZxVFF_2q8q4e-bpLO4rV5mOU_IoaSufsJLg60cUhh-x9-vQ2meXz1-eXyXiee1R8lxOVQSrkSyexVEZoJANGGb0gr5XHQFLqIHgZEJVXBrxA5yhoCIUCv8Ahu933bmP72VHa2aZKnurabajtktWyEIhgevDmH7huu7jpf7McQfa3sV89ZHd7ysc2pUjBbmPVuPhlOdgfZ_bPWQ9fHSq7RUPLX_QgCb8BhvhjYA</recordid><startdate>196709</startdate><enddate>196709</enddate><creator>Johnson, S C</creator><general>Psychometric Society, etc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>196709</creationdate><title>Hierarchical clustering schemes</title><author>Johnson, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Computers</topic><topic>Psychometrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, S C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical clustering schemes</atitle><jtitle>Psychometrika</jtitle><addtitle>Psychometrika</addtitle><date>1967-09</date><risdate>1967</risdate><volume>32</volume><issue>3</issue><spage>241</spage><epage>254</epage><pages>241-254</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”</abstract><cop>United States</cop><pub>Psychometric Society, etc</pub><pmid>5234703</pmid><doi>10.1007/BF02289588</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 1967-09, Vol.32 (3), p.241-254
issn 0033-3123
1860-0980
language eng
recordid cdi_proquest_miscellaneous_84623309
source MEDLINE; Periodicals Index Online; SpringerLink Journals - AutoHoldings
subjects Computers
Psychometrics
title Hierarchical clustering schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20clustering%20schemes&rft.jtitle=Psychometrika&rft.au=Johnson,%20S%20C&rft.date=1967-09&rft.volume=32&rft.issue=3&rft.spage=241&rft.epage=254&rft.pages=241-254&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/BF02289588&rft_dat=%3Cproquest_cross%3E84623309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304592300&rft_id=info:pmid/5234703&rfr_iscdi=true