Hierarchical clustering schemes
Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and...
Gespeichert in:
Veröffentlicht in: | Psychometrika 1967-09, Vol.32 (3), p.241-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 3 |
container_start_page | 241 |
container_title | Psychometrika |
container_volume | 32 |
creator | Johnson, S C |
description | Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.” |
doi_str_mv | 10.1007/BF02289588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_84623309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>84623309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</originalsourceid><addsrcrecordid>eNpdkEFLAzEQhYModa1evIsFwYOwOskku8mxFmuFghc9hzSd2C273Zp0D_57V1oUPL3Lx5t5H2OXHO45QPnwOAUhtFFaH7GM6wJyMBqOWQaAmCMXeMrOUloDgOFaD9hACZQlYMauZxVFF_2q8q4e-bpLO4rV5mOU_IoaSufsJLg60cUhh-x9-vQ2meXz1-eXyXiee1R8lxOVQSrkSyexVEZoJANGGb0gr5XHQFLqIHgZEJVXBrxA5yhoCIUCv8Ahu933bmP72VHa2aZKnurabajtktWyEIhgevDmH7huu7jpf7McQfa3sV89ZHd7ysc2pUjBbmPVuPhlOdgfZ_bPWQ9fHSq7RUPLX_QgCb8BhvhjYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1304592300</pqid></control><display><type>article</type><title>Hierarchical clustering schemes</title><source>MEDLINE</source><source>Periodicals Index Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Johnson, S C</creator><creatorcontrib>Johnson, S C</creatorcontrib><description>Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02289588</identifier><identifier>PMID: 5234703</identifier><language>eng</language><publisher>United States: Psychometric Society, etc</publisher><subject>Computers ; Psychometrics</subject><ispartof>Psychometrika, 1967-09, Vol.32 (3), p.241-254</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</citedby><cites>FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27852,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/5234703$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, S C</creatorcontrib><title>Hierarchical clustering schemes</title><title>Psychometrika</title><addtitle>Psychometrika</addtitle><description>Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”</description><subject>Computers</subject><subject>Psychometrics</subject><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1967</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>K30</sourceid><recordid>eNpdkEFLAzEQhYModa1evIsFwYOwOskku8mxFmuFghc9hzSd2C273Zp0D_57V1oUPL3Lx5t5H2OXHO45QPnwOAUhtFFaH7GM6wJyMBqOWQaAmCMXeMrOUloDgOFaD9hACZQlYMauZxVFF_2q8q4e-bpLO4rV5mOU_IoaSufsJLg60cUhh-x9-vQ2meXz1-eXyXiee1R8lxOVQSrkSyexVEZoJANGGb0gr5XHQFLqIHgZEJVXBrxA5yhoCIUCv8Ahu933bmP72VHa2aZKnurabajtktWyEIhgevDmH7huu7jpf7McQfa3sV89ZHd7ysc2pUjBbmPVuPhlOdgfZ_bPWQ9fHSq7RUPLX_QgCb8BhvhjYA</recordid><startdate>196709</startdate><enddate>196709</enddate><creator>Johnson, S C</creator><general>Psychometric Society, etc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>GHXMH</scope><scope>GPCCI</scope><scope>IOIBA</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>196709</creationdate><title>Hierarchical clustering schemes</title><author>Johnson, S C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-ee7f4531da43759283e909598bec85c3fe448f217f335c590c23aaef80f650cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1967</creationdate><topic>Computers</topic><topic>Psychometrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, S C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 09</collection><collection>Periodicals Index Online Segment 10</collection><collection>Periodicals Index Online Segment 29</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, S C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical clustering schemes</atitle><jtitle>Psychometrika</jtitle><addtitle>Psychometrika</addtitle><date>1967-09</date><risdate>1967</risdate><volume>32</volume><issue>3</issue><spage>241</spage><epage>254</epage><pages>241-254</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>Techniques for partitioning objects into optimally homogeneous groups on the basis of empirical measures of similarity among those objects have received increasing attention in several different fields. This paper develops a useful correspondence between any hierarchical system of such clusters, and a particular type of distance measure. The correspondence gives rise to two methods of clustering that are computationally rapid and invariant under monotonic transformations of the data. In an explicitly defined sense, one method forms clusters that are optimally “connected,” while the other forms clusters that are optimally “compact.”</abstract><cop>United States</cop><pub>Psychometric Society, etc</pub><pmid>5234703</pmid><doi>10.1007/BF02289588</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-3123 |
ispartof | Psychometrika, 1967-09, Vol.32 (3), p.241-254 |
issn | 0033-3123 1860-0980 |
language | eng |
recordid | cdi_proquest_miscellaneous_84623309 |
source | MEDLINE; Periodicals Index Online; SpringerLink Journals - AutoHoldings |
subjects | Computers Psychometrics |
title | Hierarchical clustering schemes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20clustering%20schemes&rft.jtitle=Psychometrika&rft.au=Johnson,%20S%20C&rft.date=1967-09&rft.volume=32&rft.issue=3&rft.spage=241&rft.epage=254&rft.pages=241-254&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/BF02289588&rft_dat=%3Cproquest_cross%3E84623309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1304592300&rft_id=info:pmid/5234703&rfr_iscdi=true |