Brownian dynamics simulation of insulin microsphere formation from break-up of a fractal network

Motivated by a recent experiment on insulin microsphere formation where polyethylene glycol (PEG) is used as the precipitating agent, we have developed a simple theoretical model that can predict the formation of a fractal network of insulin monomers and the subsequent break-up of the fractal networ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2011-01, Vol.134 (2), p.024902-024902-7
Hauptverfasser: Li, Wei, Gunton, J. D., Khan, Siddique J., Schoelz, J. K., Chakrabarti, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by a recent experiment on insulin microsphere formation where polyethylene glycol (PEG) is used as the precipitating agent, we have developed a simple theoretical model that can predict the formation of a fractal network of insulin monomers and the subsequent break-up of the fractal network into microsphere aggregates. In our approach the effect of PEG on insulin is modeled via a standard depletion attraction mechanism via the Asakura-Oosawa model. We show that even in the context of this simple model, it is possible to mimic important aspects of the insulin experiment in a Brownian Dynamics simulation. We simulate the effect of changing temperature in our model by changing the well depth of the Asakura-Oosawa potential. A fractal network is observed in a "deep quench" of the system, followed by a "heating" that results in a break-up of the network and subsequent formation of microspheres.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.3517865