Ultrafast optical multidimensional spectroscopy without interferometry
We present here the details of a phase retrieval technique that provides access to multidimensional modalities that are not currently available using existing interferometric techniques. The development of multidimensional optical spectroscopy has facilitated significant insights into electronic pro...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2011-01, Vol.134 (2), p.024504-024504-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 024504-12 |
---|---|
container_issue | 2 |
container_start_page | 024504 |
container_title | The Journal of chemical physics |
container_volume | 134 |
creator | Davis, J. A. Calhoun, T. R. Nugent, K. A. Quiney, H. M. |
description | We present here the details of a phase retrieval technique that provides access to multidimensional modalities that are not currently available using existing interferometric techniques. The development of multidimensional optical spectroscopy has facilitated significant insights into electronic processes in physics, chemistry, and biology. The versatility and number of available techniques are, however, significantly limited by the requirement that the detection be interferometric. Many of these techniques are closely related to the vast range of multidimensional NMR spectroscopies, which revolutionized analytical chemistry more than 30 years ago. We focus here on the specific case of two-color multidimensional spectroscopy (analogous to heteronuclear NMR) and discuss the details of an iterative algorithm that recovers the relative phase relationships required to perform the Fourier transformation and find the unique solution for the 2D spectrum. A detailed guide is provided that describes the practical implementation of such algorithms. The effectiveness and accuracy of the phase retrieval process are assessed for simulated one- and two-color experiments. It is also compared with one-color experimental data for which the target phase information has been obtained independently by interferometry. In all the cases, the present algorithm yields results that compare well with the solutions obtained by other means. There are, however, some limitations and potential pitfalls that are identified and discussed. We conclude with a discussion of the potential applications and further advances that may be possible by adopting iterative phase retrieval algorithms of the type discussed here. |
doi_str_mv | 10.1063/1.3528985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_845391358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>845391358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d3461c93d05ba4166ae8db05760de329233159dcf6a304698ccfb92fe1932b663</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk4P_gOym3jofC9p0-YiyHAqDLy4c0jTFCNtU5MU2X9vZXU3Tw8eHx8_PkKuEVYInN3jimW0EEV2QuYIhUhyLuCUzAEoJoIDn5GLED4BAHOanpMZRZoiYj4nm10TvapViEvXR6tVs2yHJtrKtqYL1nXjI_RGR--Cdv1--W3jhxvi0nbR-Np415ro95fkrFZNMFfTXZDd5ul9_ZJs355f14_bRLM8jUnFUo5asAqyUqXIuTJFVUKWc6gMo4IyhpmodM0Vg5SLQuu6FLQ2KBgtOWcLcnvw9t59DSZE2dqgTdOozrghyCLNmECWFSN5dyD1uDx4U8ve21b5vUSQv9UkyqnayN5M1qFsTXUk_zKNwMMBCNpGFccs_9uOQeUUVLYD-wGpR32p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>845391358</pqid></control><display><type>article</type><title>Ultrafast optical multidimensional spectroscopy without interferometry</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Davis, J. A. ; Calhoun, T. R. ; Nugent, K. A. ; Quiney, H. M.</creator><creatorcontrib>Davis, J. A. ; Calhoun, T. R. ; Nugent, K. A. ; Quiney, H. M.</creatorcontrib><description>We present here the details of a phase retrieval technique that provides access to multidimensional modalities that are not currently available using existing interferometric techniques. The development of multidimensional optical spectroscopy has facilitated significant insights into electronic processes in physics, chemistry, and biology. The versatility and number of available techniques are, however, significantly limited by the requirement that the detection be interferometric. Many of these techniques are closely related to the vast range of multidimensional NMR spectroscopies, which revolutionized analytical chemistry more than 30 years ago. We focus here on the specific case of two-color multidimensional spectroscopy (analogous to heteronuclear NMR) and discuss the details of an iterative algorithm that recovers the relative phase relationships required to perform the Fourier transformation and find the unique solution for the 2D spectrum. A detailed guide is provided that describes the practical implementation of such algorithms. The effectiveness and accuracy of the phase retrieval process are assessed for simulated one- and two-color experiments. It is also compared with one-color experimental data for which the target phase information has been obtained independently by interferometry. In all the cases, the present algorithm yields results that compare well with the solutions obtained by other means. There are, however, some limitations and potential pitfalls that are identified and discussed. We conclude with a discussion of the potential applications and further advances that may be possible by adopting iterative phase retrieval algorithms of the type discussed here.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3528985</identifier><identifier>PMID: 21241117</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Algorithms ; Magnetic Resonance Spectroscopy - methods</subject><ispartof>The Journal of chemical physics, 2011-01, Vol.134 (2), p.024504-024504-12</ispartof><rights>2011 American Institute of Physics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d3461c93d05ba4166ae8db05760de329233159dcf6a304698ccfb92fe1932b663</citedby><cites>FETCH-LOGICAL-c374t-d3461c93d05ba4166ae8db05760de329233159dcf6a304698ccfb92fe1932b663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4497,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21241117$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, J. A.</creatorcontrib><creatorcontrib>Calhoun, T. R.</creatorcontrib><creatorcontrib>Nugent, K. A.</creatorcontrib><creatorcontrib>Quiney, H. M.</creatorcontrib><title>Ultrafast optical multidimensional spectroscopy without interferometry</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We present here the details of a phase retrieval technique that provides access to multidimensional modalities that are not currently available using existing interferometric techniques. The development of multidimensional optical spectroscopy has facilitated significant insights into electronic processes in physics, chemistry, and biology. The versatility and number of available techniques are, however, significantly limited by the requirement that the detection be interferometric. Many of these techniques are closely related to the vast range of multidimensional NMR spectroscopies, which revolutionized analytical chemistry more than 30 years ago. We focus here on the specific case of two-color multidimensional spectroscopy (analogous to heteronuclear NMR) and discuss the details of an iterative algorithm that recovers the relative phase relationships required to perform the Fourier transformation and find the unique solution for the 2D spectrum. A detailed guide is provided that describes the practical implementation of such algorithms. The effectiveness and accuracy of the phase retrieval process are assessed for simulated one- and two-color experiments. It is also compared with one-color experimental data for which the target phase information has been obtained independently by interferometry. In all the cases, the present algorithm yields results that compare well with the solutions obtained by other means. There are, however, some limitations and potential pitfalls that are identified and discussed. We conclude with a discussion of the potential applications and further advances that may be possible by adopting iterative phase retrieval algorithms of the type discussed here.</description><subject>Algorithms</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFLwzAUh4Mobk4P_gOym3jofC9p0-YiyHAqDLy4c0jTFCNtU5MU2X9vZXU3Tw8eHx8_PkKuEVYInN3jimW0EEV2QuYIhUhyLuCUzAEoJoIDn5GLED4BAHOanpMZRZoiYj4nm10TvapViEvXR6tVs2yHJtrKtqYL1nXjI_RGR--Cdv1--W3jhxvi0nbR-Np415ro95fkrFZNMFfTXZDd5ul9_ZJs355f14_bRLM8jUnFUo5asAqyUqXIuTJFVUKWc6gMo4IyhpmodM0Vg5SLQuu6FLQ2KBgtOWcLcnvw9t59DSZE2dqgTdOozrghyCLNmECWFSN5dyD1uDx4U8ve21b5vUSQv9UkyqnayN5M1qFsTXUk_zKNwMMBCNpGFccs_9uOQeUUVLYD-wGpR32p</recordid><startdate>20110114</startdate><enddate>20110114</enddate><creator>Davis, J. A.</creator><creator>Calhoun, T. R.</creator><creator>Nugent, K. A.</creator><creator>Quiney, H. M.</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20110114</creationdate><title>Ultrafast optical multidimensional spectroscopy without interferometry</title><author>Davis, J. A. ; Calhoun, T. R. ; Nugent, K. A. ; Quiney, H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d3461c93d05ba4166ae8db05760de329233159dcf6a304698ccfb92fe1932b663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, J. A.</creatorcontrib><creatorcontrib>Calhoun, T. R.</creatorcontrib><creatorcontrib>Nugent, K. A.</creatorcontrib><creatorcontrib>Quiney, H. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, J. A.</au><au>Calhoun, T. R.</au><au>Nugent, K. A.</au><au>Quiney, H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast optical multidimensional spectroscopy without interferometry</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2011-01-14</date><risdate>2011</risdate><volume>134</volume><issue>2</issue><spage>024504</spage><epage>024504-12</epage><pages>024504-024504-12</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We present here the details of a phase retrieval technique that provides access to multidimensional modalities that are not currently available using existing interferometric techniques. The development of multidimensional optical spectroscopy has facilitated significant insights into electronic processes in physics, chemistry, and biology. The versatility and number of available techniques are, however, significantly limited by the requirement that the detection be interferometric. Many of these techniques are closely related to the vast range of multidimensional NMR spectroscopies, which revolutionized analytical chemistry more than 30 years ago. We focus here on the specific case of two-color multidimensional spectroscopy (analogous to heteronuclear NMR) and discuss the details of an iterative algorithm that recovers the relative phase relationships required to perform the Fourier transformation and find the unique solution for the 2D spectrum. A detailed guide is provided that describes the practical implementation of such algorithms. The effectiveness and accuracy of the phase retrieval process are assessed for simulated one- and two-color experiments. It is also compared with one-color experimental data for which the target phase information has been obtained independently by interferometry. In all the cases, the present algorithm yields results that compare well with the solutions obtained by other means. There are, however, some limitations and potential pitfalls that are identified and discussed. We conclude with a discussion of the potential applications and further advances that may be possible by adopting iterative phase retrieval algorithms of the type discussed here.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>21241117</pmid><doi>10.1063/1.3528985</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2011-01, Vol.134 (2), p.024504-024504-12 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_845391358 |
source | MEDLINE; AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Algorithms Magnetic Resonance Spectroscopy - methods |
title | Ultrafast optical multidimensional spectroscopy without interferometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20optical%20multidimensional%20spectroscopy%20without%20interferometry&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Davis,%20J.%20A.&rft.date=2011-01-14&rft.volume=134&rft.issue=2&rft.spage=024504&rft.epage=024504-12&rft.pages=024504-024504-12&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.3528985&rft_dat=%3Cproquest_cross%3E845391358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=845391358&rft_id=info:pmid/21241117&rfr_iscdi=true |