Role of infinite invariant measure in deterministic subdiffusion

Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2010-09, Vol.82 (3 Pt 1), p.030102-030102, Article 030102
Hauptverfasser: Akimoto, Takuma, Miyaguchi, Tomoshige
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 030102
container_issue 3 Pt 1
container_start_page 030102
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 82
creator Akimoto, Takuma
Miyaguchi, Tomoshige
description Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time difference is much smaller than the total observation time, the time-averaged mean square displacement depends linearly on the time difference. Furthermore, the diffusion coefficient becomes a random variable and its limit distribution is characterized by the universal law called the Mittag-Leffler distribution.
doi_str_mv 10.1103/physreve.82.030102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_840355652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>840355652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-2919edf4a35046ec607f240f50e7cfd0119d916091ee9ae23b267acbc2c89b9a3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwAyxQdqxSxuM4iXcgVB5SJVAFa8txxsKoSYqdVOrfk6qF1VyNzr2Lw9g1hznnIO42X7sYaEvzEucggAOesCmXElIURX66z0KlopBywi5i_AYQKMrsnE2QowDgOGX3q25NSecS3zrf-p7GsDXBm7ZPGjJxCPtPUlNPoRmB2HubxKGqvXND9F17yc6cWUe6Ot4Z-3xafDy-pMu359fHh2VqM170KSquqHaZERKynGwOhcMMnAQqrKuBc1UrnoPiRMoQigrzwtjKoi1VpYyYsdvD7iZ0PwPFXjc-WlqvTUvdEHWZgZAylziSeCBt6OIoyOlN8I0JO81B78Xp91HcirYLXaI-iBtLN8f5oWqo_q_8mRK_jCdrrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>840355652</pqid></control><display><type>article</type><title>Role of infinite invariant measure in deterministic subdiffusion</title><source>American Physical Society Journals</source><creator>Akimoto, Takuma ; Miyaguchi, Tomoshige</creator><creatorcontrib>Akimoto, Takuma ; Miyaguchi, Tomoshige</creatorcontrib><description>Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time difference is much smaller than the total observation time, the time-averaged mean square displacement depends linearly on the time difference. Furthermore, the diffusion coefficient becomes a random variable and its limit distribution is characterized by the universal law called the Mittag-Leffler distribution.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/physreve.82.030102</identifier><identifier>PMID: 21230012</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-09, Vol.82 (3 Pt 1), p.030102-030102, Article 030102</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-2919edf4a35046ec607f240f50e7cfd0119d916091ee9ae23b267acbc2c89b9a3</citedby><cites>FETCH-LOGICAL-c417t-2919edf4a35046ec607f240f50e7cfd0119d916091ee9ae23b267acbc2c89b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21230012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akimoto, Takuma</creatorcontrib><creatorcontrib>Miyaguchi, Tomoshige</creatorcontrib><title>Role of infinite invariant measure in deterministic subdiffusion</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time difference is much smaller than the total observation time, the time-averaged mean square displacement depends linearly on the time difference. Furthermore, the diffusion coefficient becomes a random variable and its limit distribution is characterized by the universal law called the Mittag-Leffler distribution.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqXwAyxQdqxSxuM4iXcgVB5SJVAFa8txxsKoSYqdVOrfk6qF1VyNzr2Lw9g1hznnIO42X7sYaEvzEucggAOesCmXElIURX66z0KlopBywi5i_AYQKMrsnE2QowDgOGX3q25NSecS3zrf-p7GsDXBm7ZPGjJxCPtPUlNPoRmB2HubxKGqvXND9F17yc6cWUe6Ot4Z-3xafDy-pMu359fHh2VqM170KSquqHaZERKynGwOhcMMnAQqrKuBc1UrnoPiRMoQigrzwtjKoi1VpYyYsdvD7iZ0PwPFXjc-WlqvTUvdEHWZgZAylziSeCBt6OIoyOlN8I0JO81B78Xp91HcirYLXaI-iBtLN8f5oWqo_q_8mRK_jCdrrw</recordid><startdate>20100907</startdate><enddate>20100907</enddate><creator>Akimoto, Takuma</creator><creator>Miyaguchi, Tomoshige</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100907</creationdate><title>Role of infinite invariant measure in deterministic subdiffusion</title><author>Akimoto, Takuma ; Miyaguchi, Tomoshige</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-2919edf4a35046ec607f240f50e7cfd0119d916091ee9ae23b267acbc2c89b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Akimoto, Takuma</creatorcontrib><creatorcontrib>Miyaguchi, Tomoshige</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akimoto, Takuma</au><au>Miyaguchi, Tomoshige</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of infinite invariant measure in deterministic subdiffusion</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2010-09-07</date><risdate>2010</risdate><volume>82</volume><issue>3 Pt 1</issue><spage>030102</spage><epage>030102</epage><pages>030102-030102</pages><artnum>030102</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>Statistical properties of the transport coefficient for deterministic subdiffusion are investigated from the viewpoint of infinite ergodic theory. We find that the averaged diffusion coefficient is characterized by the infinite invariant measure of the reduced map. We also show that when the time difference is much smaller than the total observation time, the time-averaged mean square displacement depends linearly on the time difference. Furthermore, the diffusion coefficient becomes a random variable and its limit distribution is characterized by the universal law called the Mittag-Leffler distribution.</abstract><cop>United States</cop><pmid>21230012</pmid><doi>10.1103/physreve.82.030102</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2010-09, Vol.82 (3 Pt 1), p.030102-030102, Article 030102
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_840355652
source American Physical Society Journals
title Role of infinite invariant measure in deterministic subdiffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20infinite%20invariant%20measure%20in%20deterministic%20subdiffusion&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Akimoto,%20Takuma&rft.date=2010-09-07&rft.volume=82&rft.issue=3%20Pt%201&rft.spage=030102&rft.epage=030102&rft.pages=030102-030102&rft.artnum=030102&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/physreve.82.030102&rft_dat=%3Cproquest_cross%3E840355652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=840355652&rft_id=info:pmid/21230012&rfr_iscdi=true