Structure and Reactivity of the Cysteine Methyl Ester Radical Cation

The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion–molecule reactions with dimethyl disulfide, allyl bromide, and ally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2011-01, Vol.17 (3), p.873-879
Hauptverfasser: Osburn, Sandra, Steill, Jeffrey D., Oomens, Jos, O'Hair, Richard A. J., van Stipdonk, Michael, Ryzhov, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 879
container_issue 3
container_start_page 873
container_title Chemistry : a European journal
container_volume 17
creator Osburn, Sandra
Steill, Jeffrey D.
Oomens, Jos
O'Hair, Richard A. J.
van Stipdonk, Michael
Ryzhov, Victor
description The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion–molecule reactions with dimethyl disulfide, allyl bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe.+ possessing structure 1, in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2, in which the radical site is positioned on the α carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol−1. To resolve this apparent discrepancy the gas‐phase IR spectrum of CysOMe.+ was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1. DFT calculations highlight that although 1 is thermodynamically less stable than 2, it is kinetically stable with respect to rearrangement. Structure and reactivity: The radical cation of cysteine methyl ester (see graphic) was prepared in the gas phase by dissociation of the protonated S‐nitrosylated precursor. A combination of infrared multiple‐photon dissociation (IRMPD) spectroscopy and ion–molecule reactions confirms that the radical remains on the sulfur atom (distonic S) and does not migrate to the more stable α‐carbon position (captodative) due to a high rearrangement barrier.
doi_str_mv 10.1002/chem.201002042
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839715104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957757991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5092-ff6b79934984b325dffcc36684161a4531691e3685545f06ef93236c43fd49cd3</originalsourceid><addsrcrecordid>eNqFkU1v1DAURS1ERactW5bIEgu6yeDnr8RLFIYpVVukFkR3lsexNS6ZpLUTIP8ej6YdIRaw8rN07pHeuwi9AjIHQug7u3abOSXbmXD6DM1AUChYKcVzNCOKl4UUTB2io5TuCCFKMvYCHVKgVAKhM_ThZoijHcbosOkafO2MHcKPMEy493hYO1xPaXChc_jSDeupxYv8jfjaNMGaFtdmCH13gg68aZN7-fgeo68fF1_qs-Li8_JT_f6isIIoWngvV6VSjKuKrxgVjffWMikrDhIMFwykAsdkJQQXnkjnFaNMWs58w5Vt2DF6u_Pex_5hdGnQm5Csa1vTuX5MumKqBAGEZ_L0nySUZUWoIhVk9M1f6F0_xi7vkSkpJUAFVabmO8rGPqXovL6PYWPipIHo7fX1tgm9byIHXj9qx9XGNXv86fQZUDvgZ2jd9B-drs8Wl3_Ki1025DZ-7bMmfteyZKXQ366WWXN-vrxit_qW_QbApaCx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766611818</pqid></control><display><type>article</type><title>Structure and Reactivity of the Cysteine Methyl Ester Radical Cation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Osburn, Sandra ; Steill, Jeffrey D. ; Oomens, Jos ; O'Hair, Richard A. J. ; van Stipdonk, Michael ; Ryzhov, Victor</creator><creatorcontrib>Osburn, Sandra ; Steill, Jeffrey D. ; Oomens, Jos ; O'Hair, Richard A. J. ; van Stipdonk, Michael ; Ryzhov, Victor</creatorcontrib><description>The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion–molecule reactions with dimethyl disulfide, allyl bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe.+ possessing structure 1, in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2, in which the radical site is positioned on the α carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol−1. To resolve this apparent discrepancy the gas‐phase IR spectrum of CysOMe.+ was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1. DFT calculations highlight that although 1 is thermodynamically less stable than 2, it is kinetically stable with respect to rearrangement. Structure and reactivity: The radical cation of cysteine methyl ester (see graphic) was prepared in the gas phase by dissociation of the protonated S‐nitrosylated precursor. A combination of infrared multiple‐photon dissociation (IRMPD) spectroscopy and ion–molecule reactions confirms that the radical remains on the sulfur atom (distonic S) and does not migrate to the more stable α‐carbon position (captodative) due to a high rearrangement barrier.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201002042</identifier><identifier>PMID: 21226102</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Atomic structure ; Carbon ; Cations ; Cations - chemistry ; Chemistry ; Computer Simulation ; Cysteine ; Cysteine - analogs &amp; derivatives ; Cysteine - chemistry ; density functional calculations ; Dimethyl ; Esters ; gas-phase chemistry ; Gases - chemistry ; IR spectroscopy ; Isomerism ; Kinetics ; Mathematical analysis ; Molecular Structure ; radical ions ; Radicals ; Spectrophotometry, Infrared ; Tandem Mass Spectrometry - methods ; Thermodynamics</subject><ispartof>Chemistry : a European journal, 2011-01, Vol.17 (3), p.873-879</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5092-ff6b79934984b325dffcc36684161a4531691e3685545f06ef93236c43fd49cd3</citedby><cites>FETCH-LOGICAL-c5092-ff6b79934984b325dffcc36684161a4531691e3685545f06ef93236c43fd49cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201002042$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201002042$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21226102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osburn, Sandra</creatorcontrib><creatorcontrib>Steill, Jeffrey D.</creatorcontrib><creatorcontrib>Oomens, Jos</creatorcontrib><creatorcontrib>O'Hair, Richard A. J.</creatorcontrib><creatorcontrib>van Stipdonk, Michael</creatorcontrib><creatorcontrib>Ryzhov, Victor</creatorcontrib><title>Structure and Reactivity of the Cysteine Methyl Ester Radical Cation</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion–molecule reactions with dimethyl disulfide, allyl bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe.+ possessing structure 1, in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2, in which the radical site is positioned on the α carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol−1. To resolve this apparent discrepancy the gas‐phase IR spectrum of CysOMe.+ was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1. DFT calculations highlight that although 1 is thermodynamically less stable than 2, it is kinetically stable with respect to rearrangement. Structure and reactivity: The radical cation of cysteine methyl ester (see graphic) was prepared in the gas phase by dissociation of the protonated S‐nitrosylated precursor. A combination of infrared multiple‐photon dissociation (IRMPD) spectroscopy and ion–molecule reactions confirms that the radical remains on the sulfur atom (distonic S) and does not migrate to the more stable α‐carbon position (captodative) due to a high rearrangement barrier.</description><subject>Atomic structure</subject><subject>Carbon</subject><subject>Cations</subject><subject>Cations - chemistry</subject><subject>Chemistry</subject><subject>Computer Simulation</subject><subject>Cysteine</subject><subject>Cysteine - analogs &amp; derivatives</subject><subject>Cysteine - chemistry</subject><subject>density functional calculations</subject><subject>Dimethyl</subject><subject>Esters</subject><subject>gas-phase chemistry</subject><subject>Gases - chemistry</subject><subject>IR spectroscopy</subject><subject>Isomerism</subject><subject>Kinetics</subject><subject>Mathematical analysis</subject><subject>Molecular Structure</subject><subject>radical ions</subject><subject>Radicals</subject><subject>Spectrophotometry, Infrared</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Thermodynamics</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAURS1ERactW5bIEgu6yeDnr8RLFIYpVVukFkR3lsexNS6ZpLUTIP8ej6YdIRaw8rN07pHeuwi9AjIHQug7u3abOSXbmXD6DM1AUChYKcVzNCOKl4UUTB2io5TuCCFKMvYCHVKgVAKhM_ThZoijHcbosOkafO2MHcKPMEy493hYO1xPaXChc_jSDeupxYv8jfjaNMGaFtdmCH13gg68aZN7-fgeo68fF1_qs-Li8_JT_f6isIIoWngvV6VSjKuKrxgVjffWMikrDhIMFwykAsdkJQQXnkjnFaNMWs58w5Vt2DF6u_Pex_5hdGnQm5Csa1vTuX5MumKqBAGEZ_L0nySUZUWoIhVk9M1f6F0_xi7vkSkpJUAFVabmO8rGPqXovL6PYWPipIHo7fX1tgm9byIHXj9qx9XGNXv86fQZUDvgZ2jd9B-drs8Wl3_Ki1025DZ-7bMmfteyZKXQ366WWXN-vrxit_qW_QbApaCx</recordid><startdate>20110117</startdate><enddate>20110117</enddate><creator>Osburn, Sandra</creator><creator>Steill, Jeffrey D.</creator><creator>Oomens, Jos</creator><creator>O'Hair, Richard A. J.</creator><creator>van Stipdonk, Michael</creator><creator>Ryzhov, Victor</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20110117</creationdate><title>Structure and Reactivity of the Cysteine Methyl Ester Radical Cation</title><author>Osburn, Sandra ; Steill, Jeffrey D. ; Oomens, Jos ; O'Hair, Richard A. J. ; van Stipdonk, Michael ; Ryzhov, Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5092-ff6b79934984b325dffcc36684161a4531691e3685545f06ef93236c43fd49cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atomic structure</topic><topic>Carbon</topic><topic>Cations</topic><topic>Cations - chemistry</topic><topic>Chemistry</topic><topic>Computer Simulation</topic><topic>Cysteine</topic><topic>Cysteine - analogs &amp; derivatives</topic><topic>Cysteine - chemistry</topic><topic>density functional calculations</topic><topic>Dimethyl</topic><topic>Esters</topic><topic>gas-phase chemistry</topic><topic>Gases - chemistry</topic><topic>IR spectroscopy</topic><topic>Isomerism</topic><topic>Kinetics</topic><topic>Mathematical analysis</topic><topic>Molecular Structure</topic><topic>radical ions</topic><topic>Radicals</topic><topic>Spectrophotometry, Infrared</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osburn, Sandra</creatorcontrib><creatorcontrib>Steill, Jeffrey D.</creatorcontrib><creatorcontrib>Oomens, Jos</creatorcontrib><creatorcontrib>O'Hair, Richard A. J.</creatorcontrib><creatorcontrib>van Stipdonk, Michael</creatorcontrib><creatorcontrib>Ryzhov, Victor</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osburn, Sandra</au><au>Steill, Jeffrey D.</au><au>Oomens, Jos</au><au>O'Hair, Richard A. J.</au><au>van Stipdonk, Michael</au><au>Ryzhov, Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Reactivity of the Cysteine Methyl Ester Radical Cation</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2011-01-17</date><risdate>2011</risdate><volume>17</volume><issue>3</issue><spage>873</spage><epage>879</epage><pages>873-879</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>The structure and reactivity of the cysteine methyl ester radical cation, CysOMe.+, have been examined in the gas phase using a combination of experiment and density functional theory (DFT) calculations. CysOMe.+ undergoes rapid ion–molecule reactions with dimethyl disulfide, allyl bromide, and allyl iodide, but is unreactive towards allyl chloride. These reactions proceed by radical atom or group transfer and are consistent with CysOMe.+ possessing structure 1, in which the radical site is located on the sulfur atom and the amino group is protonated. This contrasts with DFT calculations that predict a captodative structure 2, in which the radical site is positioned on the α carbon and the carbonyl group is protonated, and that is more stable than 1 by 13.0 kJ mol−1. To resolve this apparent discrepancy the gas‐phase IR spectrum of CysOMe.+ was experimentally determined and compared with the theoretically predicted IR spectra of a range of isomers. An excellent match was obtained for 1. DFT calculations highlight that although 1 is thermodynamically less stable than 2, it is kinetically stable with respect to rearrangement. Structure and reactivity: The radical cation of cysteine methyl ester (see graphic) was prepared in the gas phase by dissociation of the protonated S‐nitrosylated precursor. A combination of infrared multiple‐photon dissociation (IRMPD) spectroscopy and ion–molecule reactions confirms that the radical remains on the sulfur atom (distonic S) and does not migrate to the more stable α‐carbon position (captodative) due to a high rearrangement barrier.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21226102</pmid><doi>10.1002/chem.201002042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2011-01, Vol.17 (3), p.873-879
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_839715104
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Atomic structure
Carbon
Cations
Cations - chemistry
Chemistry
Computer Simulation
Cysteine
Cysteine - analogs & derivatives
Cysteine - chemistry
density functional calculations
Dimethyl
Esters
gas-phase chemistry
Gases - chemistry
IR spectroscopy
Isomerism
Kinetics
Mathematical analysis
Molecular Structure
radical ions
Radicals
Spectrophotometry, Infrared
Tandem Mass Spectrometry - methods
Thermodynamics
title Structure and Reactivity of the Cysteine Methyl Ester Radical Cation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Reactivity%20of%20the%20Cysteine%20Methyl%20Ester%20Radical%20Cation&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Osburn,%20Sandra&rft.date=2011-01-17&rft.volume=17&rft.issue=3&rft.spage=873&rft.epage=879&rft.pages=873-879&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201002042&rft_dat=%3Cproquest_cross%3E3957757991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766611818&rft_id=info:pmid/21226102&rfr_iscdi=true