Steps towards a mechanistic understanding of respiratory temperature responses

CONTENTS: Summary 659 I. Introduction 660 II. Representation of the instantaneous temperature response of respiration 661 III. Temperature responses of mitochondrial oxygen reduction 662 IV. The temperature response of CO₂ respiration 671 V. Conclusion 673 Acknowledgements 673 References 674 SUMMARY...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2011-02, Vol.189 (3), p.659-677
Hauptverfasser: Kruse, Jörg, Rennenberg, Heinz, Adams, Mark A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 677
container_issue 3
container_start_page 659
container_title The New phytologist
container_volume 189
creator Kruse, Jörg
Rennenberg, Heinz
Adams, Mark A.
description CONTENTS: Summary 659 I. Introduction 660 II. Representation of the instantaneous temperature response of respiration 661 III. Temperature responses of mitochondrial oxygen reduction 662 IV. The temperature response of CO₂ respiration 671 V. Conclusion 673 Acknowledgements 673 References 674 SUMMARY: Temperature crucially affects the speed of metabolic processes in poikilotherm organisms, including plants. The instantaneous temperature responses of O₂-reduction and CO₂-release can be approximated by Arrhenius kinetics, even though respiratory gas exchange of plants is the net effect of many constituent biochemical processes. Nonetheless, the classical Arrhenius equation must be modified to account for a dynamic response to measurement temperatures. We show that this dynamic response is readily explained by combining Arrhenius and Michaelis-Menten kinetics, as part of a fresh appraisal of metabolic interpretations of instantaneous temperature responses. In combination with recent experimental findings, we argue that control of mitochondrial electron flow is shared among cytochrome oxidase and alternative oxidase under in vivo conditions, and is continuously coordinated. In this way, upstream carbohydrate metabolism and downstream electron transport appear to be optimized according to the demand of ATP, TCA-cycle intermediates and anabolic reducing power under differing metabolic states. We provide a link to the ‘Growth and Maintenance Paradigm' of respiration and argue that respiratory temperature responses can be used as a tool to probe metabolic states of plant tissue, such that we can learn more about the mechanisms that govern longer-term acclimatization responses of plant metabolism.
doi_str_mv 10.1111/j.1469-8137.2010.03576.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_839709346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40983898</jstor_id><sourcerecordid>40983898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5586-f876e9150ac0572f1859f0d5e6719e7dbdd6a04046cb6f7e9b1f8ab1870bee433</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi0EotuFnwBE4sApy9hO_HHgUFXQIlUFqVTiZjnJuCTaxMFO1O6_x2nKHjhhaeTRzPvOjB5CMgo7mt7HbkcLoXNFudwxSFXgpRS7h2dkc2w8JxsApnJRiJ8n5DTGDgB0KdhLcsIoY5wpviHXNxOOMZv8vQ1NzGzWY_3LDm2c2jqbhwZDnOzQtMNd5l0WMI5tsJMPh2zCfsSUzwEf636IGF-RF87uI75--rfk9svnH-eX-dW3i6_nZ1d5XZZK5E5JgZqWYGsoJXNUldpBU6KQVKNsqqYRFgooRF0JJ1FX1ClbUSWhQiw435IP69wx-N8zxsn0baxxv7cD-jkaxbUEzQuRlO__UXZ-DkM6zrCSMg6CKkgqtarq4GMM6MwY2t6Gg6FgFuSmMwtZs5A1C3LziNw8JOvbpwVz1WNzNP5lnASfVsF9u8fDfw82198vlyz536z-LibwR38BWnGVYkverX1nvbF3oY3m9iZN4kB1inTBH4jHotI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512306180</pqid></control><display><type>article</type><title>Steps towards a mechanistic understanding of respiratory temperature responses</title><source>MEDLINE</source><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Kruse, Jörg ; Rennenberg, Heinz ; Adams, Mark A.</creator><creatorcontrib>Kruse, Jörg ; Rennenberg, Heinz ; Adams, Mark A.</creatorcontrib><description>CONTENTS: Summary 659 I. Introduction 660 II. Representation of the instantaneous temperature response of respiration 661 III. Temperature responses of mitochondrial oxygen reduction 662 IV. The temperature response of CO₂ respiration 671 V. Conclusion 673 Acknowledgements 673 References 674 SUMMARY: Temperature crucially affects the speed of metabolic processes in poikilotherm organisms, including plants. The instantaneous temperature responses of O₂-reduction and CO₂-release can be approximated by Arrhenius kinetics, even though respiratory gas exchange of plants is the net effect of many constituent biochemical processes. Nonetheless, the classical Arrhenius equation must be modified to account for a dynamic response to measurement temperatures. We show that this dynamic response is readily explained by combining Arrhenius and Michaelis-Menten kinetics, as part of a fresh appraisal of metabolic interpretations of instantaneous temperature responses. In combination with recent experimental findings, we argue that control of mitochondrial electron flow is shared among cytochrome oxidase and alternative oxidase under in vivo conditions, and is continuously coordinated. In this way, upstream carbohydrate metabolism and downstream electron transport appear to be optimized according to the demand of ATP, TCA-cycle intermediates and anabolic reducing power under differing metabolic states. We provide a link to the ‘Growth and Maintenance Paradigm' of respiration and argue that respiratory temperature responses can be used as a tool to probe metabolic states of plant tissue, such that we can learn more about the mechanisms that govern longer-term acclimatization responses of plant metabolism.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2010.03576.x</identifier><identifier>PMID: 21223283</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acclimatization ; Acclimatization - physiology ; Alternative oxidase ; Anabolism ; Arrhenius kinetics ; ATP ; Carbohydrate Metabolism ; Carbohydrates ; Carbon dioxide ; Carbon Dioxide - metabolism ; Cell Respiration - physiology ; Cytochrome ; Cytochromes ; Dynamic response ; Electron transport ; Energy Metabolism ; Gas exchange ; Intermediates ; Kinetics ; Low temperature ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Oxidase ; Oxidases ; Oxidoreductases - metabolism ; Oxygen ; Oxygen - metabolism ; Plant growth ; Plant metabolism ; Plant tissues ; Plants ; Plants - metabolism ; Q10‐model ; Respiration ; Stress, Physiological - physiology ; Tansley review ; Temperature ; Temperature dependence ; Temperature measurement ; temperature response</subject><ispartof>The New phytologist, 2011-02, Vol.189 (3), p.659-677</ispartof><rights>Copyright © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust</rights><rights>2011 The Authors. New Phytologist © 2011 New Phytologist Trust.</rights><rights>Copyright Wiley Subscription Services, Inc. Feb 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5586-f876e9150ac0572f1859f0d5e6719e7dbdd6a04046cb6f7e9b1f8ab1870bee433</citedby><cites>FETCH-LOGICAL-c5586-f876e9150ac0572f1859f0d5e6719e7dbdd6a04046cb6f7e9b1f8ab1870bee433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40983898$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40983898$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,1433,27924,27925,45574,45575,46409,46833,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21223283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruse, Jörg</creatorcontrib><creatorcontrib>Rennenberg, Heinz</creatorcontrib><creatorcontrib>Adams, Mark A.</creatorcontrib><title>Steps towards a mechanistic understanding of respiratory temperature responses</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>CONTENTS: Summary 659 I. Introduction 660 II. Representation of the instantaneous temperature response of respiration 661 III. Temperature responses of mitochondrial oxygen reduction 662 IV. The temperature response of CO₂ respiration 671 V. Conclusion 673 Acknowledgements 673 References 674 SUMMARY: Temperature crucially affects the speed of metabolic processes in poikilotherm organisms, including plants. The instantaneous temperature responses of O₂-reduction and CO₂-release can be approximated by Arrhenius kinetics, even though respiratory gas exchange of plants is the net effect of many constituent biochemical processes. Nonetheless, the classical Arrhenius equation must be modified to account for a dynamic response to measurement temperatures. We show that this dynamic response is readily explained by combining Arrhenius and Michaelis-Menten kinetics, as part of a fresh appraisal of metabolic interpretations of instantaneous temperature responses. In combination with recent experimental findings, we argue that control of mitochondrial electron flow is shared among cytochrome oxidase and alternative oxidase under in vivo conditions, and is continuously coordinated. In this way, upstream carbohydrate metabolism and downstream electron transport appear to be optimized according to the demand of ATP, TCA-cycle intermediates and anabolic reducing power under differing metabolic states. We provide a link to the ‘Growth and Maintenance Paradigm' of respiration and argue that respiratory temperature responses can be used as a tool to probe metabolic states of plant tissue, such that we can learn more about the mechanisms that govern longer-term acclimatization responses of plant metabolism.</description><subject>Acclimatization</subject><subject>Acclimatization - physiology</subject><subject>Alternative oxidase</subject><subject>Anabolism</subject><subject>Arrhenius kinetics</subject><subject>ATP</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - metabolism</subject><subject>Cell Respiration - physiology</subject><subject>Cytochrome</subject><subject>Cytochromes</subject><subject>Dynamic response</subject><subject>Electron transport</subject><subject>Energy Metabolism</subject><subject>Gas exchange</subject><subject>Intermediates</subject><subject>Kinetics</subject><subject>Low temperature</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Oxidase</subject><subject>Oxidases</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Plant growth</subject><subject>Plant metabolism</subject><subject>Plant tissues</subject><subject>Plants</subject><subject>Plants - metabolism</subject><subject>Q10‐model</subject><subject>Respiration</subject><subject>Stress, Physiological - physiology</subject><subject>Tansley review</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature measurement</subject><subject>temperature response</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1v1DAQhi0EotuFnwBE4sApy9hO_HHgUFXQIlUFqVTiZjnJuCTaxMFO1O6_x2nKHjhhaeTRzPvOjB5CMgo7mt7HbkcLoXNFudwxSFXgpRS7h2dkc2w8JxsApnJRiJ8n5DTGDgB0KdhLcsIoY5wpviHXNxOOMZv8vQ1NzGzWY_3LDm2c2jqbhwZDnOzQtMNd5l0WMI5tsJMPh2zCfsSUzwEf636IGF-RF87uI75--rfk9svnH-eX-dW3i6_nZ1d5XZZK5E5JgZqWYGsoJXNUldpBU6KQVKNsqqYRFgooRF0JJ1FX1ClbUSWhQiw435IP69wx-N8zxsn0baxxv7cD-jkaxbUEzQuRlO__UXZ-DkM6zrCSMg6CKkgqtarq4GMM6MwY2t6Gg6FgFuSmMwtZs5A1C3LziNw8JOvbpwVz1WNzNP5lnASfVsF9u8fDfw82198vlyz536z-LibwR38BWnGVYkverX1nvbF3oY3m9iZN4kB1inTBH4jHotI</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Kruse, Jörg</creator><creator>Rennenberg, Heinz</creator><creator>Adams, Mark A.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201102</creationdate><title>Steps towards a mechanistic understanding of respiratory temperature responses</title><author>Kruse, Jörg ; Rennenberg, Heinz ; Adams, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5586-f876e9150ac0572f1859f0d5e6719e7dbdd6a04046cb6f7e9b1f8ab1870bee433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acclimatization</topic><topic>Acclimatization - physiology</topic><topic>Alternative oxidase</topic><topic>Anabolism</topic><topic>Arrhenius kinetics</topic><topic>ATP</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - metabolism</topic><topic>Cell Respiration - physiology</topic><topic>Cytochrome</topic><topic>Cytochromes</topic><topic>Dynamic response</topic><topic>Electron transport</topic><topic>Energy Metabolism</topic><topic>Gas exchange</topic><topic>Intermediates</topic><topic>Kinetics</topic><topic>Low temperature</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Oxidase</topic><topic>Oxidases</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Plant growth</topic><topic>Plant metabolism</topic><topic>Plant tissues</topic><topic>Plants</topic><topic>Plants - metabolism</topic><topic>Q10‐model</topic><topic>Respiration</topic><topic>Stress, Physiological - physiology</topic><topic>Tansley review</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature measurement</topic><topic>temperature response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Jörg</creatorcontrib><creatorcontrib>Rennenberg, Heinz</creatorcontrib><creatorcontrib>Adams, Mark A.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Jörg</au><au>Rennenberg, Heinz</au><au>Adams, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steps towards a mechanistic understanding of respiratory temperature responses</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2011-02</date><risdate>2011</risdate><volume>189</volume><issue>3</issue><spage>659</spage><epage>677</epage><pages>659-677</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>CONTENTS: Summary 659 I. Introduction 660 II. Representation of the instantaneous temperature response of respiration 661 III. Temperature responses of mitochondrial oxygen reduction 662 IV. The temperature response of CO₂ respiration 671 V. Conclusion 673 Acknowledgements 673 References 674 SUMMARY: Temperature crucially affects the speed of metabolic processes in poikilotherm organisms, including plants. The instantaneous temperature responses of O₂-reduction and CO₂-release can be approximated by Arrhenius kinetics, even though respiratory gas exchange of plants is the net effect of many constituent biochemical processes. Nonetheless, the classical Arrhenius equation must be modified to account for a dynamic response to measurement temperatures. We show that this dynamic response is readily explained by combining Arrhenius and Michaelis-Menten kinetics, as part of a fresh appraisal of metabolic interpretations of instantaneous temperature responses. In combination with recent experimental findings, we argue that control of mitochondrial electron flow is shared among cytochrome oxidase and alternative oxidase under in vivo conditions, and is continuously coordinated. In this way, upstream carbohydrate metabolism and downstream electron transport appear to be optimized according to the demand of ATP, TCA-cycle intermediates and anabolic reducing power under differing metabolic states. We provide a link to the ‘Growth and Maintenance Paradigm' of respiration and argue that respiratory temperature responses can be used as a tool to probe metabolic states of plant tissue, such that we can learn more about the mechanisms that govern longer-term acclimatization responses of plant metabolism.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21223283</pmid><doi>10.1111/j.1469-8137.2010.03576.x</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2011-02, Vol.189 (3), p.659-677
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_839709346
source MEDLINE; Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects Acclimatization
Acclimatization - physiology
Alternative oxidase
Anabolism
Arrhenius kinetics
ATP
Carbohydrate Metabolism
Carbohydrates
Carbon dioxide
Carbon Dioxide - metabolism
Cell Respiration - physiology
Cytochrome
Cytochromes
Dynamic response
Electron transport
Energy Metabolism
Gas exchange
Intermediates
Kinetics
Low temperature
Metabolism
Mitochondria
Mitochondria - metabolism
Oxidase
Oxidases
Oxidoreductases - metabolism
Oxygen
Oxygen - metabolism
Plant growth
Plant metabolism
Plant tissues
Plants
Plants - metabolism
Q10‐model
Respiration
Stress, Physiological - physiology
Tansley review
Temperature
Temperature dependence
Temperature measurement
temperature response
title Steps towards a mechanistic understanding of respiratory temperature responses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steps%20towards%20a%20mechanistic%20understanding%20of%20respiratory%20temperature%20responses&rft.jtitle=The%20New%20phytologist&rft.au=Kruse,%20J%C3%B6rg&rft.date=2011-02&rft.volume=189&rft.issue=3&rft.spage=659&rft.epage=677&rft.pages=659-677&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2010.03576.x&rft_dat=%3Cjstor_proqu%3E40983898%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512306180&rft_id=info:pmid/21223283&rft_jstor_id=40983898&rfr_iscdi=true