The Analysis of Factorial Surveys

Factorial surveys constitute a specific technique for introducing experimental designs in sample surveys. Respondents are presented with descriptions (vignettes) of a constructed world in which important factors are built in experimentally. Using balanced designs well known from the multivariate exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research 1991-05, Vol.19 (4), p.493-510
Hauptverfasser: HOX, JOOP J., KREFT, ITA G. G., HERMKENS, PIET L. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 4
container_start_page 493
container_title Sociological methods & research
container_volume 19
creator HOX, JOOP J.
KREFT, ITA G. G.
HERMKENS, PIET L. J.
description Factorial surveys constitute a specific technique for introducing experimental designs in sample surveys. Respondents are presented with descriptions (vignettes) of a constructed world in which important factors are built in experimentally. Using balanced designs well known from the multivariate experimental tradition, it is possible to build in a relatively large number of factors and levels. Within this context, the normal hypothesis is that responses are consistent on the individual level, but not totally idiosyncratic. In the analysis, it is important to determine the influence of both the vignette and the respondent variables. Analysis models for this type of data should reflect the fact that factorial surveys produce data pertaining to two distinct levels: the individual level and the vignette level. Such models are available and are generally known as multilevel analysis models. This article discusses the properties of factorial survey designs and some analysis models that address the multilevel aspects of the data. An example is presented using data on judgments on the fairness of incomes.
doi_str_mv 10.1177/0049124191019004003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839243820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0049124191019004003</sage_id><sourcerecordid>1292213271</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-53e5c1833163cec140006dc42b1308ba5ee4e21250ec41a0001d93dc1c0b05423</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqL_CyIuhpdT6S7uZYilWh4MF6Dmma6pZttya7Qv-9KfUgIj2FIc87zIwQlwh3iEVxDyA1kkSNgDoVAHwkeqgU5SVpeSx6O5HvyKk4i3EJgFQA98TV9MNnw7Wtt7GKWbPIxta1Tahsnb124ctv47k4Wdg6-oufty_exg_T0VM-eXl8Hg0nuZXAba7YK4clMw7YeYdpBhjMnaQZMpQzq7yXnpAUeCfRpl-ca547dDADJYn74nbfdxOaz87H1qyq6Hxd27VvumhK1iS5JEjy5qAcIFEhJSd4_Qcumy6kZaNB0kTIVGBSvFcuNDEGvzCbUK1s2BoEszuv-ee8KQX7VLTv_lffA5FvrJx19w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1292213271</pqid></control><display><type>article</type><title>The Analysis of Factorial Surveys</title><source>SAGE Complete</source><source>Sociological Abstracts</source><source>Periodicals Index Online</source><creator>HOX, JOOP J. ; KREFT, ITA G. G. ; HERMKENS, PIET L. J.</creator><creatorcontrib>HOX, JOOP J. ; KREFT, ITA G. G. ; HERMKENS, PIET L. J.</creatorcontrib><description>Factorial surveys constitute a specific technique for introducing experimental designs in sample surveys. Respondents are presented with descriptions (vignettes) of a constructed world in which important factors are built in experimentally. Using balanced designs well known from the multivariate experimental tradition, it is possible to build in a relatively large number of factors and levels. Within this context, the normal hypothesis is that responses are consistent on the individual level, but not totally idiosyncratic. In the analysis, it is important to determine the influence of both the vignette and the respondent variables. Analysis models for this type of data should reflect the fact that factorial surveys produce data pertaining to two distinct levels: the individual level and the vignette level. Such models are available and are generally known as multilevel analysis models. This article discusses the properties of factorial survey designs and some analysis models that address the multilevel aspects of the data. An example is presented using data on judgments on the fairness of incomes.</description><identifier>ISSN: 0049-1241</identifier><identifier>EISSN: 1552-8294</identifier><identifier>DOI: 10.1177/0049124191019004003</identifier><identifier>CODEN: SMREDA</identifier><language>eng</language><publisher>Beverly Hills, Calif: SAGE PUBLICATIONS</publisher><subject>Factor Analysis ; Methodology (Data Analysis) ; Research Design ; Survey analysis ; Surveys</subject><ispartof>Sociological methods &amp; research, 1991-05, Vol.19 (4), p.493-510</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-53e5c1833163cec140006dc42b1308ba5ee4e21250ec41a0001d93dc1c0b05423</citedby><cites>FETCH-LOGICAL-a403t-53e5c1833163cec140006dc42b1308ba5ee4e21250ec41a0001d93dc1c0b05423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0049124191019004003$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0049124191019004003$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27848,27903,27904,33754,43600,43601</link.rule.ids></links><search><creatorcontrib>HOX, JOOP J.</creatorcontrib><creatorcontrib>KREFT, ITA G. G.</creatorcontrib><creatorcontrib>HERMKENS, PIET L. J.</creatorcontrib><title>The Analysis of Factorial Surveys</title><title>Sociological methods &amp; research</title><description>Factorial surveys constitute a specific technique for introducing experimental designs in sample surveys. Respondents are presented with descriptions (vignettes) of a constructed world in which important factors are built in experimentally. Using balanced designs well known from the multivariate experimental tradition, it is possible to build in a relatively large number of factors and levels. Within this context, the normal hypothesis is that responses are consistent on the individual level, but not totally idiosyncratic. In the analysis, it is important to determine the influence of both the vignette and the respondent variables. Analysis models for this type of data should reflect the fact that factorial surveys produce data pertaining to two distinct levels: the individual level and the vignette level. Such models are available and are generally known as multilevel analysis models. This article discusses the properties of factorial survey designs and some analysis models that address the multilevel aspects of the data. An example is presented using data on judgments on the fairness of incomes.</description><subject>Factor Analysis</subject><subject>Methodology (Data Analysis)</subject><subject>Research Design</subject><subject>Survey analysis</subject><subject>Surveys</subject><issn>0049-1241</issn><issn>1552-8294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><sourceid>BHHNA</sourceid><recordid>eNp90E1LAzEQBuAgCtbqL_CyIuhpdT6S7uZYilWh4MF6Dmma6pZttya7Qv-9KfUgIj2FIc87zIwQlwh3iEVxDyA1kkSNgDoVAHwkeqgU5SVpeSx6O5HvyKk4i3EJgFQA98TV9MNnw7Wtt7GKWbPIxta1Tahsnb124ctv47k4Wdg6-oufty_exg_T0VM-eXl8Hg0nuZXAba7YK4clMw7YeYdpBhjMnaQZMpQzq7yXnpAUeCfRpl-ca547dDADJYn74nbfdxOaz87H1qyq6Hxd27VvumhK1iS5JEjy5qAcIFEhJSd4_Qcumy6kZaNB0kTIVGBSvFcuNDEGvzCbUK1s2BoEszuv-ee8KQX7VLTv_lffA5FvrJx19w</recordid><startdate>19910501</startdate><enddate>19910501</enddate><creator>HOX, JOOP J.</creator><creator>KREFT, ITA G. G.</creator><creator>HERMKENS, PIET L. J.</creator><general>SAGE PUBLICATIONS</general><general>Sage Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQCIK</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7U4</scope><scope>BHHNA</scope><scope>DWI</scope><scope>WZK</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>19910501</creationdate><title>The Analysis of Factorial Surveys</title><author>HOX, JOOP J. ; KREFT, ITA G. G. ; HERMKENS, PIET L. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-53e5c1833163cec140006dc42b1308ba5ee4e21250ec41a0001d93dc1c0b05423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Factor Analysis</topic><topic>Methodology (Data Analysis)</topic><topic>Research Design</topic><topic>Survey analysis</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOX, JOOP J.</creatorcontrib><creatorcontrib>KREFT, ITA G. G.</creatorcontrib><creatorcontrib>HERMKENS, PIET L. J.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 33</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Sociological methods &amp; research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOX, JOOP J.</au><au>KREFT, ITA G. G.</au><au>HERMKENS, PIET L. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Analysis of Factorial Surveys</atitle><jtitle>Sociological methods &amp; research</jtitle><date>1991-05-01</date><risdate>1991</risdate><volume>19</volume><issue>4</issue><spage>493</spage><epage>510</epage><pages>493-510</pages><issn>0049-1241</issn><eissn>1552-8294</eissn><coden>SMREDA</coden><abstract>Factorial surveys constitute a specific technique for introducing experimental designs in sample surveys. Respondents are presented with descriptions (vignettes) of a constructed world in which important factors are built in experimentally. Using balanced designs well known from the multivariate experimental tradition, it is possible to build in a relatively large number of factors and levels. Within this context, the normal hypothesis is that responses are consistent on the individual level, but not totally idiosyncratic. In the analysis, it is important to determine the influence of both the vignette and the respondent variables. Analysis models for this type of data should reflect the fact that factorial surveys produce data pertaining to two distinct levels: the individual level and the vignette level. Such models are available and are generally known as multilevel analysis models. This article discusses the properties of factorial survey designs and some analysis models that address the multilevel aspects of the data. An example is presented using data on judgments on the fairness of incomes.</abstract><cop>Beverly Hills, Calif</cop><pub>SAGE PUBLICATIONS</pub><doi>10.1177/0049124191019004003</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-1241
ispartof Sociological methods & research, 1991-05, Vol.19 (4), p.493-510
issn 0049-1241
1552-8294
language eng
recordid cdi_proquest_miscellaneous_839243820
source SAGE Complete; Sociological Abstracts; Periodicals Index Online
subjects Factor Analysis
Methodology (Data Analysis)
Research Design
Survey analysis
Surveys
title The Analysis of Factorial Surveys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A54%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Analysis%20of%20Factorial%20Surveys&rft.jtitle=Sociological%20methods%20&%20research&rft.au=HOX,%20JOOP%20J.&rft.date=1991-05-01&rft.volume=19&rft.issue=4&rft.spage=493&rft.epage=510&rft.pages=493-510&rft.issn=0049-1241&rft.eissn=1552-8294&rft.coden=SMREDA&rft_id=info:doi/10.1177/0049124191019004003&rft_dat=%3Cproquest_cross%3E1292213271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1292213271&rft_id=info:pmid/&rft_sage_id=10.1177_0049124191019004003&rfr_iscdi=true