Asymptotic theory for certain regression models with long memory errors

The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 1997-07, Vol.18 (4), p.385-393
1. Verfasser: Deo, R. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 4
container_start_page 385
container_title Journal of time series analysis
container_volume 18
creator Deo, R. S.
description The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.
doi_str_mv 10.1111/1467-9892.00057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839070910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>839070910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2697-f1d5fca141ffcb0c9898d0d9ad825b9a490a88e6648a32c6a300d1586d8fdfd83</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EEqUws2ZjSnudpz1WFYRHBQNFZbNcP1pDEhc7VcnfkxDUFS9Xss65ujoIXWOY4O5NcZLlISU0mgBAmp-g0fHnFI0AJ3FIcxKdowvvPwBwluR4hIqZb6tdYxsjgmarrGsDbV0glGu4qQOnNk55b2wdVFaq0gcH02yD0taboFJVjyvnrPOX6Ezz0qurvzlGb3e3y_l9uHgpHuazRSiijOahxjLVguMEay3WILrriARJuSRRuqY8ocAJUVmWEB5HIuMxgMQpySTRUksSj9HNsHfn7Nde-YZVxgtVlrxWdu8ZiSnkQDF05HQghbPeO6XZzpmKu5ZhYH0x1vdhfR_2W6wzksE4mFK1_-Hscfk6G7Rw0Ixv1PdR4-6TZXmcp2z1XLDVEidF9P7EIP4Bs299dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>839070910</pqid></control><display><type>article</type><title>Asymptotic theory for certain regression models with long memory errors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deo, R. S.</creator><creatorcontrib>Deo, R. S.</creatorcontrib><description>The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/1467-9892.00057</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Long memory ; Mathematical analysis ; Regression analysis ; regression models ; Time series</subject><ispartof>Journal of time series analysis, 1997-07, Vol.18 (4), p.385-393</ispartof><rights>Blackwell Publishers Ltd 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2697-f1d5fca141ffcb0c9898d0d9ad825b9a490a88e6648a32c6a300d1586d8fdfd83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1467-9892.00057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1467-9892.00057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Deo, R. S.</creatorcontrib><title>Asymptotic theory for certain regression models with long memory errors</title><title>Journal of time series analysis</title><description>The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.</description><subject>Long memory</subject><subject>Mathematical analysis</subject><subject>Regression analysis</subject><subject>regression models</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EEqUws2ZjSnudpz1WFYRHBQNFZbNcP1pDEhc7VcnfkxDUFS9Xss65ujoIXWOY4O5NcZLlISU0mgBAmp-g0fHnFI0AJ3FIcxKdowvvPwBwluR4hIqZb6tdYxsjgmarrGsDbV0glGu4qQOnNk55b2wdVFaq0gcH02yD0taboFJVjyvnrPOX6Ezz0qurvzlGb3e3y_l9uHgpHuazRSiijOahxjLVguMEay3WILrriARJuSRRuqY8ocAJUVmWEB5HIuMxgMQpySTRUksSj9HNsHfn7Nde-YZVxgtVlrxWdu8ZiSnkQDF05HQghbPeO6XZzpmKu5ZhYH0x1vdhfR_2W6wzksE4mFK1_-Hscfk6G7Rw0Ixv1PdR4-6TZXmcp2z1XLDVEidF9P7EIP4Bs299dA</recordid><startdate>199707</startdate><enddate>199707</enddate><creator>Deo, R. S.</creator><general>Blackwell Publishers Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>199707</creationdate><title>Asymptotic theory for certain regression models with long memory errors</title><author>Deo, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2697-f1d5fca141ffcb0c9898d0d9ad825b9a490a88e6648a32c6a300d1586d8fdfd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Long memory</topic><topic>Mathematical analysis</topic><topic>Regression analysis</topic><topic>regression models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deo, R. S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deo, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic theory for certain regression models with long memory errors</atitle><jtitle>Journal of time series analysis</jtitle><date>1997-07</date><risdate>1997</risdate><volume>18</volume><issue>4</issue><spage>385</spage><epage>393</epage><pages>385-393</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9892.00057</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 1997-07, Vol.18 (4), p.385-393
issn 0143-9782
1467-9892
language eng
recordid cdi_proquest_miscellaneous_839070910
source Wiley Online Library Journals Frontfile Complete
subjects Long memory
Mathematical analysis
Regression analysis
regression models
Time series
title Asymptotic theory for certain regression models with long memory errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20theory%20for%20certain%20regression%20models%20with%20long%20memory%20errors&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Deo,%20R.%20S.&rft.date=1997-07&rft.volume=18&rft.issue=4&rft.spage=385&rft.epage=393&rft.pages=385-393&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/1467-9892.00057&rft_dat=%3Cproquest_cross%3E839070910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=839070910&rft_id=info:pmid/&rfr_iscdi=true