Asymptotic theory for certain regression models with long memory errors
The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 1997-07, Vol.18 (4), p.385-393 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 4 |
container_start_page | 385 |
container_title | Journal of time series analysis |
container_volume | 18 |
creator | Deo, R. S. |
description | The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal. |
doi_str_mv | 10.1111/1467-9892.00057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_839070910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>839070910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2697-f1d5fca141ffcb0c9898d0d9ad825b9a490a88e6648a32c6a300d1586d8fdfd83</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQC0EEqUws2ZjSnudpz1WFYRHBQNFZbNcP1pDEhc7VcnfkxDUFS9Xss65ujoIXWOY4O5NcZLlISU0mgBAmp-g0fHnFI0AJ3FIcxKdowvvPwBwluR4hIqZb6tdYxsjgmarrGsDbV0glGu4qQOnNk55b2wdVFaq0gcH02yD0taboFJVjyvnrPOX6Ezz0qurvzlGb3e3y_l9uHgpHuazRSiijOahxjLVguMEay3WILrriARJuSRRuqY8ocAJUVmWEB5HIuMxgMQpySTRUksSj9HNsHfn7Nde-YZVxgtVlrxWdu8ZiSnkQDF05HQghbPeO6XZzpmKu5ZhYH0x1vdhfR_2W6wzksE4mFK1_-Hscfk6G7Rw0Ixv1PdR4-6TZXmcp2z1XLDVEidF9P7EIP4Bs299dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>839070910</pqid></control><display><type>article</type><title>Asymptotic theory for certain regression models with long memory errors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deo, R. S.</creator><creatorcontrib>Deo, R. S.</creatorcontrib><description>The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/1467-9892.00057</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Long memory ; Mathematical analysis ; Regression analysis ; regression models ; Time series</subject><ispartof>Journal of time series analysis, 1997-07, Vol.18 (4), p.385-393</ispartof><rights>Blackwell Publishers Ltd 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2697-f1d5fca141ffcb0c9898d0d9ad825b9a490a88e6648a32c6a300d1586d8fdfd83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1467-9892.00057$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1467-9892.00057$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Deo, R. S.</creatorcontrib><title>Asymptotic theory for certain regression models with long memory errors</title><title>Journal of time series analysis</title><description>The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.</description><subject>Long memory</subject><subject>Mathematical analysis</subject><subject>Regression analysis</subject><subject>regression models</subject><subject>Time series</subject><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQC0EEqUws2ZjSnudpz1WFYRHBQNFZbNcP1pDEhc7VcnfkxDUFS9Xss65ujoIXWOY4O5NcZLlISU0mgBAmp-g0fHnFI0AJ3FIcxKdowvvPwBwluR4hIqZb6tdYxsjgmarrGsDbV0glGu4qQOnNk55b2wdVFaq0gcH02yD0taboFJVjyvnrPOX6Ezz0qurvzlGb3e3y_l9uHgpHuazRSiijOahxjLVguMEay3WILrriARJuSRRuqY8ocAJUVmWEB5HIuMxgMQpySTRUksSj9HNsHfn7Nde-YZVxgtVlrxWdu8ZiSnkQDF05HQghbPeO6XZzpmKu5ZhYH0x1vdhfR_2W6wzksE4mFK1_-Hscfk6G7Rw0Ixv1PdR4-6TZXmcp2z1XLDVEidF9P7EIP4Bs299dA</recordid><startdate>199707</startdate><enddate>199707</enddate><creator>Deo, R. S.</creator><general>Blackwell Publishers Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>199707</creationdate><title>Asymptotic theory for certain regression models with long memory errors</title><author>Deo, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2697-f1d5fca141ffcb0c9898d0d9ad825b9a490a88e6648a32c6a300d1586d8fdfd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Long memory</topic><topic>Mathematical analysis</topic><topic>Regression analysis</topic><topic>regression models</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deo, R. S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deo, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic theory for certain regression models with long memory errors</atitle><jtitle>Journal of time series analysis</jtitle><date>1997-07</date><risdate>1997</risdate><volume>18</volume><issue>4</issue><spage>385</spage><epage>393</epage><pages>385-393</pages><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>The asymptotic distribution of a weighted linear combination of a linear long memory series is shown to be normal for certain weights. This result can be used to derive the limiting distribution of the least squares estimators for polynomial trends and of the periodogram at fixed Fourier frequencies. A closed form expression for the asymptotic relative bias of the tapered periodogram at fixed Fourier frequencies is also obtained. A weighted least squares estimator, which is asymptotically efficient for polynomial trend regressors, is shown to be asymptotically normal.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9892.00057</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-9782 |
ispartof | Journal of time series analysis, 1997-07, Vol.18 (4), p.385-393 |
issn | 0143-9782 1467-9892 |
language | eng |
recordid | cdi_proquest_miscellaneous_839070910 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Long memory Mathematical analysis Regression analysis regression models Time series |
title | Asymptotic theory for certain regression models with long memory errors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20theory%20for%20certain%20regression%20models%20with%20long%20memory%20errors&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Deo,%20R.%20S.&rft.date=1997-07&rft.volume=18&rft.issue=4&rft.spage=385&rft.epage=393&rft.pages=385-393&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/1467-9892.00057&rft_dat=%3Cproquest_cross%3E839070910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=839070910&rft_id=info:pmid/&rfr_iscdi=true |