A functional wavelet-kernel approach for time series prediction
We consider the prediction problem of a time series on a whole time interval in terms of its past. The approach that we adopt is based on functional kernel nonparametric regression estimation techniques where observations are discrete recordings of segments of an underlying stochastic process consid...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Statistical methodology, 2006-11, Vol.68 (5), p.837-857 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 857 |
---|---|
container_issue | 5 |
container_start_page | 837 |
container_title | Journal of the Royal Statistical Society. Series B, Statistical methodology |
container_volume | 68 |
creator | Antoniadis, Anestis Paparoditis, Efstathios Sapatinas, Theofanis |
description | We consider the prediction problem of a time series on a whole time interval in terms of its past. The approach that we adopt is based on functional kernel nonparametric regression estimation techniques where observations are discrete recordings of segments of an underlying stochastic process considered as curves. These curves are assumed to lie within the space of continuous functions, and the discretized time series data set consists of a relatively small, compared with the number of segments, number of measurements made at regular times. We estimate conditional expectations by using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used to calibrate the prediction. Asymptotic properties when the number of segments grows to ∞ are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise prediction intervals for the trajectories predicted. We illustrate the usefulness of the proposed functional wavelet-kernel methodology in finite sample situations by means of a simulated example and two real life data sets, and we compare the resulting predictions with those obtained by three other methods in the literature, in particular with a smoothing spline method, with an exponential smoothing procedure and with a seasonal autoregressive integrated moving average model. |
doi_str_mv | 10.1111/j.1467-9868.2006.00569.x |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_838990888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3879277</jstor_id><sourcerecordid>3879277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6449-e879ec3102ec03a5d029d1d56ba58a842bcd7d52025c4c47481c6f3d1a0f805d3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEEqXwDThESIhTghP_PyBUCi2gUqQtqMeR15moSbObYGfb3W_fyaZaJE5YGtnSvJ_9_OwkSQuWFzTet3khlM6sUSYvGVM5Y1LZfPskOTo0ntKaK5tpUZTPkxcxtoyG0vwo-XiS1pu1H5t-7br03t1hh2N2i2GNXeqGIfTO36R1H9KxWWEaMTQY0yFg1eyhl8mz2nURXz3Ox8nvsy-_Tr9mFz_Pv52eXGReCWEzNNqi5wUr0TPuZMVKWxWVVEsnjTOiXPpKV7JkpfTCCy1M4VXNq8Kx2jBZ8ePk3bwvOfqzwTjCqokeu86tsd9EMNxYy4wxpHzzj7LtN4FuF4HyMdLSKSQys8iHPsaANQyhWbmwg4LBlCu0MMUHU3wTp2CfK2wJ_T6jAQf0B27ZubYPMS7hDrgjiLsd1R7lrqGSVAOV4RqM1HAzrmizt49mXfSuq4Nb-yb-NWNKobiY_H6YdfdNh7v_NguLq6tPtCL-9cy3cezDgef0LKXW1M7mdhNH3B7aLtwC_RIt4fryHBbXP4T9fGlgwR8AMCK8Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200859520</pqid></control><display><type>article</type><title>A functional wavelet-kernel approach for time series prediction</title><source>RePEc</source><source>Wiley Journals</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Antoniadis, Anestis ; Paparoditis, Efstathios ; Sapatinas, Theofanis</creator><creatorcontrib>Antoniadis, Anestis ; Paparoditis, Efstathios ; Sapatinas, Theofanis</creatorcontrib><description>We consider the prediction problem of a time series on a whole time interval in terms of its past. The approach that we adopt is based on functional kernel nonparametric regression estimation techniques where observations are discrete recordings of segments of an underlying stochastic process considered as curves. These curves are assumed to lie within the space of continuous functions, and the discretized time series data set consists of a relatively small, compared with the number of segments, number of measurements made at regular times. We estimate conditional expectations by using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used to calibrate the prediction. Asymptotic properties when the number of segments grows to ∞ are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise prediction intervals for the trajectories predicted. We illustrate the usefulness of the proposed functional wavelet-kernel methodology in finite sample situations by means of a simulated example and two real life data sets, and we compare the resulting predictions with those obtained by three other methods in the literature, in particular with a smoothing spline method, with an exponential smoothing procedure and with a seasonal autoregressive integrated moving average model.</description><identifier>ISSN: 1369-7412</identifier><identifier>EISSN: 1467-9868</identifier><identifier>DOI: 10.1111/j.1467-9868.2006.00569.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Besov spaces ; Coefficients ; Data smoothing ; Econometrics ; Estimation ; Exact sciences and technology ; Exponential smoothing ; Forecasting models ; Fourier analysis ; Functional kernel regression ; Inference from stochastic processes; time series analysis ; Mathematics ; Modeling ; Musical intervals ; Nonparametric inference ; Numerical analysis ; Numerical analysis. Scientific computation ; Pointwise prediction intervals ; Probability and statistics ; Regression analysis ; Resampling ; Sciences and techniques of general use ; Seasonal autoregressive integrated moving average models ; Smoothing splines ; Statistical methods ; Statistics ; Stochastic models ; Stochastic processes ; Studies ; Time series ; Time series forecasting ; Time series models ; Time series prediction ; Wavelet analysis ; Wavelet transforms ; Wavelets ; α-mixing</subject><ispartof>Journal of the Royal Statistical Society. Series B, Statistical methodology, 2006-11, Vol.68 (5), p.837-857</ispartof><rights>Copyright 2006 The Royal Statistical Society and Blackwell Publishing Ltd.</rights><rights>2006 INIST-CNRS</rights><rights>2006 Royal Statistical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6449-e879ec3102ec03a5d029d1d56ba58a842bcd7d52025c4c47481c6f3d1a0f805d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3879277$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3879277$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,1417,4008,27924,27925,45574,45575,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18246340$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blajorssb/v_3a68_3ay_3a2006_3ai_3a5_3ap_3a837-857.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Antoniadis, Anestis</creatorcontrib><creatorcontrib>Paparoditis, Efstathios</creatorcontrib><creatorcontrib>Sapatinas, Theofanis</creatorcontrib><title>A functional wavelet-kernel approach for time series prediction</title><title>Journal of the Royal Statistical Society. Series B, Statistical methodology</title><description>We consider the prediction problem of a time series on a whole time interval in terms of its past. The approach that we adopt is based on functional kernel nonparametric regression estimation techniques where observations are discrete recordings of segments of an underlying stochastic process considered as curves. These curves are assumed to lie within the space of continuous functions, and the discretized time series data set consists of a relatively small, compared with the number of segments, number of measurements made at regular times. We estimate conditional expectations by using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used to calibrate the prediction. Asymptotic properties when the number of segments grows to ∞ are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise prediction intervals for the trajectories predicted. We illustrate the usefulness of the proposed functional wavelet-kernel methodology in finite sample situations by means of a simulated example and two real life data sets, and we compare the resulting predictions with those obtained by three other methods in the literature, in particular with a smoothing spline method, with an exponential smoothing procedure and with a seasonal autoregressive integrated moving average model.</description><subject>Besov spaces</subject><subject>Coefficients</subject><subject>Data smoothing</subject><subject>Econometrics</subject><subject>Estimation</subject><subject>Exact sciences and technology</subject><subject>Exponential smoothing</subject><subject>Forecasting models</subject><subject>Fourier analysis</subject><subject>Functional kernel regression</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Musical intervals</subject><subject>Nonparametric inference</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Pointwise prediction intervals</subject><subject>Probability and statistics</subject><subject>Regression analysis</subject><subject>Resampling</subject><subject>Sciences and techniques of general use</subject><subject>Seasonal autoregressive integrated moving average models</subject><subject>Smoothing splines</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Time series</subject><subject>Time series forecasting</subject><subject>Time series models</subject><subject>Time series prediction</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><subject>Wavelets</subject><subject>α-mixing</subject><issn>1369-7412</issn><issn>1467-9868</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqNkk9v1DAQxSMEEqXwDThESIhTghP_PyBUCi2gUqQtqMeR15moSbObYGfb3W_fyaZaJE5YGtnSvJ_9_OwkSQuWFzTet3khlM6sUSYvGVM5Y1LZfPskOTo0ntKaK5tpUZTPkxcxtoyG0vwo-XiS1pu1H5t-7br03t1hh2N2i2GNXeqGIfTO36R1H9KxWWEaMTQY0yFg1eyhl8mz2nURXz3Ox8nvsy-_Tr9mFz_Pv52eXGReCWEzNNqi5wUr0TPuZMVKWxWVVEsnjTOiXPpKV7JkpfTCCy1M4VXNq8Kx2jBZ8ePk3bwvOfqzwTjCqokeu86tsd9EMNxYy4wxpHzzj7LtN4FuF4HyMdLSKSQys8iHPsaANQyhWbmwg4LBlCu0MMUHU3wTp2CfK2wJ_T6jAQf0B27ZubYPMS7hDrgjiLsd1R7lrqGSVAOV4RqM1HAzrmizt49mXfSuq4Nb-yb-NWNKobiY_H6YdfdNh7v_NguLq6tPtCL-9cy3cezDgef0LKXW1M7mdhNH3B7aLtwC_RIt4fryHBbXP4T9fGlgwR8AMCK8Og</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>Antoniadis, Anestis</creator><creator>Paparoditis, Efstathios</creator><creator>Sapatinas, Theofanis</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Royal Statistical Society</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200611</creationdate><title>A functional wavelet-kernel approach for time series prediction</title><author>Antoniadis, Anestis ; Paparoditis, Efstathios ; Sapatinas, Theofanis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6449-e879ec3102ec03a5d029d1d56ba58a842bcd7d52025c4c47481c6f3d1a0f805d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Besov spaces</topic><topic>Coefficients</topic><topic>Data smoothing</topic><topic>Econometrics</topic><topic>Estimation</topic><topic>Exact sciences and technology</topic><topic>Exponential smoothing</topic><topic>Forecasting models</topic><topic>Fourier analysis</topic><topic>Functional kernel regression</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Musical intervals</topic><topic>Nonparametric inference</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Pointwise prediction intervals</topic><topic>Probability and statistics</topic><topic>Regression analysis</topic><topic>Resampling</topic><topic>Sciences and techniques of general use</topic><topic>Seasonal autoregressive integrated moving average models</topic><topic>Smoothing splines</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Time series</topic><topic>Time series forecasting</topic><topic>Time series models</topic><topic>Time series prediction</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><topic>Wavelets</topic><topic>α-mixing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antoniadis, Anestis</creatorcontrib><creatorcontrib>Paparoditis, Efstathios</creatorcontrib><creatorcontrib>Sapatinas, Theofanis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antoniadis, Anestis</au><au>Paparoditis, Efstathios</au><au>Sapatinas, Theofanis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A functional wavelet-kernel approach for time series prediction</atitle><jtitle>Journal of the Royal Statistical Society. Series B, Statistical methodology</jtitle><date>2006-11</date><risdate>2006</risdate><volume>68</volume><issue>5</issue><spage>837</spage><epage>857</epage><pages>837-857</pages><issn>1369-7412</issn><eissn>1467-9868</eissn><abstract>We consider the prediction problem of a time series on a whole time interval in terms of its past. The approach that we adopt is based on functional kernel nonparametric regression estimation techniques where observations are discrete recordings of segments of an underlying stochastic process considered as curves. These curves are assumed to lie within the space of continuous functions, and the discretized time series data set consists of a relatively small, compared with the number of segments, number of measurements made at regular times. We estimate conditional expectations by using appropriate wavelet decompositions of the segmented sample paths. A notion of similarity, based on wavelet decompositions, is used to calibrate the prediction. Asymptotic properties when the number of segments grows to ∞ are investigated under mild conditions, and a nonparametric resampling procedure is used to generate, in a flexible way, valid asymptotic pointwise prediction intervals for the trajectories predicted. We illustrate the usefulness of the proposed functional wavelet-kernel methodology in finite sample situations by means of a simulated example and two real life data sets, and we compare the resulting predictions with those obtained by three other methods in the literature, in particular with a smoothing spline method, with an exponential smoothing procedure and with a seasonal autoregressive integrated moving average model.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9868.2006.00569.x</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1369-7412 |
ispartof | Journal of the Royal Statistical Society. Series B, Statistical methodology, 2006-11, Vol.68 (5), p.837-857 |
issn | 1369-7412 1467-9868 |
language | eng |
recordid | cdi_proquest_miscellaneous_838990888 |
source | RePEc; Wiley Journals; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current) |
subjects | Besov spaces Coefficients Data smoothing Econometrics Estimation Exact sciences and technology Exponential smoothing Forecasting models Fourier analysis Functional kernel regression Inference from stochastic processes time series analysis Mathematics Modeling Musical intervals Nonparametric inference Numerical analysis Numerical analysis. Scientific computation Pointwise prediction intervals Probability and statistics Regression analysis Resampling Sciences and techniques of general use Seasonal autoregressive integrated moving average models Smoothing splines Statistical methods Statistics Stochastic models Stochastic processes Studies Time series Time series forecasting Time series models Time series prediction Wavelet analysis Wavelet transforms Wavelets α-mixing |
title | A functional wavelet-kernel approach for time series prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20functional%20wavelet-kernel%20approach%20for%20time%20series%20prediction&rft.jtitle=Journal%20of%20the%20Royal%20Statistical%20Society.%20Series%20B,%20Statistical%20methodology&rft.au=Antoniadis,%20Anestis&rft.date=2006-11&rft.volume=68&rft.issue=5&rft.spage=837&rft.epage=857&rft.pages=837-857&rft.issn=1369-7412&rft.eissn=1467-9868&rft_id=info:doi/10.1111/j.1467-9868.2006.00569.x&rft_dat=%3Cjstor_proqu%3E3879277%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200859520&rft_id=info:pmid/&rft_jstor_id=3879277&rfr_iscdi=true |