Asymptotic analysis of a risk process with high dividend barrier

In this paper we study a risk model with constant high dividend barrier. We apply Keilson’s ( 1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distributio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2010-08, Vol.47 (1), p.21-26
1. Verfasser: Frostig, Esther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 1
container_start_page 21
container_title Insurance, mathematics & economics
container_volume 47
creator Frostig, Esther
description In this paper we study a risk model with constant high dividend barrier. We apply Keilson’s ( 1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.
doi_str_mv 10.1016/j.insmatheco.2010.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_838967089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668710000338</els_id><sourcerecordid>2053948691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBBILIF_sHLhNIvf9twSooREisQlnC3H7mG87DywZzfav08vi4LEJYe2pVZVqbqKEMrZmjNuvmzWeaxDWHqI01owXDO5Zky_ISvurGx0q9u3ZIVQ2xjj7HvyodYNY4y3xq7IxWU9DPMyLTnSMIbtoeZKp44GWnL9RecyRaiVPuWlp33-2dOU9znBmOhjKCVD-UjedWFb4dPf_4z8uLl-uLpt7r9_u7u6vG-ilnZpVGt1KzphOhVYSJFppxXvWLQq2ShACvFoUgohOtWlZKRlwikZbYhgRbDyjHw-6aKl3zuoix9yjbDdhhGmXfVOOjyIufZVpNXKWS0cR-T5f8jNtCuYQvXSoF2lrEOQO4FimWot0Pm55CGUg-fMHyvwG_-vAn-swDPpsQKk3p6oBWaILzwAQMJuCH7vZVAWnwPOH6YMGYfjzMcV98L4fhlQ6utJCjDjPebua8wwRki5QFx8mvLrfp4BD3qsqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365924478</pqid></control><display><type>article</type><title>Asymptotic analysis of a risk process with high dividend barrier</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Frostig, Esther</creator><creatorcontrib>Frostig, Esther</creatorcontrib><description>In this paper we study a risk model with constant high dividend barrier. We apply Keilson’s ( 1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2010.03.005</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1 queue Regenerative process ; Asymptotic methods ; Busy cycle ; Busy cycle Idle period Cycle maxima Subexponential distribution GI ; Cycle maxima ; Dividends ; Finance ; Financial assets ; Financial models ; GI/G/1 queue ; Idle period ; Interest rates ; Random walk theory ; Regenerative process ; Risk assessment ; Risk management ; Studies ; Subexponential distribution ; Value theory</subject><ispartof>Insurance, mathematics &amp; economics, 2010-08, Vol.47 (1), p.21-26</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</citedby><cites>FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2010.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a47_3ay_3a2010_3ai_3a1_3ap_3a21-26.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Frostig, Esther</creatorcontrib><title>Asymptotic analysis of a risk process with high dividend barrier</title><title>Insurance, mathematics &amp; economics</title><description>In this paper we study a risk model with constant high dividend barrier. We apply Keilson’s ( 1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.</description><subject>1 queue Regenerative process</subject><subject>Asymptotic methods</subject><subject>Busy cycle</subject><subject>Busy cycle Idle period Cycle maxima Subexponential distribution GI</subject><subject>Cycle maxima</subject><subject>Dividends</subject><subject>Finance</subject><subject>Financial assets</subject><subject>Financial models</subject><subject>GI/G/1 queue</subject><subject>Idle period</subject><subject>Interest rates</subject><subject>Random walk theory</subject><subject>Regenerative process</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Studies</subject><subject>Subexponential distribution</subject><subject>Value theory</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUctuFDEQtBBILIF_sHLhNIvf9twSooREisQlnC3H7mG87DywZzfav08vi4LEJYe2pVZVqbqKEMrZmjNuvmzWeaxDWHqI01owXDO5Zky_ISvurGx0q9u3ZIVQ2xjj7HvyodYNY4y3xq7IxWU9DPMyLTnSMIbtoeZKp44GWnL9RecyRaiVPuWlp33-2dOU9znBmOhjKCVD-UjedWFb4dPf_4z8uLl-uLpt7r9_u7u6vG-ilnZpVGt1KzphOhVYSJFppxXvWLQq2ShACvFoUgohOtWlZKRlwikZbYhgRbDyjHw-6aKl3zuoix9yjbDdhhGmXfVOOjyIufZVpNXKWS0cR-T5f8jNtCuYQvXSoF2lrEOQO4FimWot0Pm55CGUg-fMHyvwG_-vAn-swDPpsQKk3p6oBWaILzwAQMJuCH7vZVAWnwPOH6YMGYfjzMcV98L4fhlQ6utJCjDjPebua8wwRki5QFx8mvLrfp4BD3qsqg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Frostig, Esther</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20100801</creationdate><title>Asymptotic analysis of a risk process with high dividend barrier</title><author>Frostig, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1 queue Regenerative process</topic><topic>Asymptotic methods</topic><topic>Busy cycle</topic><topic>Busy cycle Idle period Cycle maxima Subexponential distribution GI</topic><topic>Cycle maxima</topic><topic>Dividends</topic><topic>Finance</topic><topic>Financial assets</topic><topic>Financial models</topic><topic>GI/G/1 queue</topic><topic>Idle period</topic><topic>Interest rates</topic><topic>Random walk theory</topic><topic>Regenerative process</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Studies</topic><topic>Subexponential distribution</topic><topic>Value theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frostig, Esther</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frostig, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic analysis of a risk process with high dividend barrier</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>47</volume><issue>1</issue><spage>21</spage><epage>26</epage><pages>21-26</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In this paper we study a risk model with constant high dividend barrier. We apply Keilson’s ( 1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2010.03.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2010-08, Vol.47 (1), p.21-26
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_838967089
source RePEc; Elsevier ScienceDirect Journals
subjects 1 queue Regenerative process
Asymptotic methods
Busy cycle
Busy cycle Idle period Cycle maxima Subexponential distribution GI
Cycle maxima
Dividends
Finance
Financial assets
Financial models
GI/G/1 queue
Idle period
Interest rates
Random walk theory
Regenerative process
Risk assessment
Risk management
Studies
Subexponential distribution
Value theory
title Asymptotic analysis of a risk process with high dividend barrier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20analysis%20of%20a%20risk%20process%20with%20high%20dividend%20barrier&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Frostig,%20Esther&rft.date=2010-08-01&rft.volume=47&rft.issue=1&rft.spage=21&rft.epage=26&rft.pages=21-26&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2010.03.005&rft_dat=%3Cproquest_cross%3E2053948691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=365924478&rft_id=info:pmid/&rft_els_id=S0167668710000338&rfr_iscdi=true