Asymptotic analysis of a risk process with high dividend barrier
In this paper we study a risk model with constant high dividend barrier. We apply Keilson’s ( 1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distributio...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2010-08, Vol.47 (1), p.21-26 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 21 |
container_title | Insurance, mathematics & economics |
container_volume | 47 |
creator | Frostig, Esther |
description | In this paper we study a risk model with constant high dividend barrier. We apply
Keilson’s (
1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin. |
doi_str_mv | 10.1016/j.insmatheco.2010.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_838967089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668710000338</els_id><sourcerecordid>2053948691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</originalsourceid><addsrcrecordid>eNqFUctuFDEQtBBILIF_sHLhNIvf9twSooREisQlnC3H7mG87DywZzfav08vi4LEJYe2pVZVqbqKEMrZmjNuvmzWeaxDWHqI01owXDO5Zky_ISvurGx0q9u3ZIVQ2xjj7HvyodYNY4y3xq7IxWU9DPMyLTnSMIbtoeZKp44GWnL9RecyRaiVPuWlp33-2dOU9znBmOhjKCVD-UjedWFb4dPf_4z8uLl-uLpt7r9_u7u6vG-ilnZpVGt1KzphOhVYSJFppxXvWLQq2ShACvFoUgohOtWlZKRlwikZbYhgRbDyjHw-6aKl3zuoix9yjbDdhhGmXfVOOjyIufZVpNXKWS0cR-T5f8jNtCuYQvXSoF2lrEOQO4FimWot0Pm55CGUg-fMHyvwG_-vAn-swDPpsQKk3p6oBWaILzwAQMJuCH7vZVAWnwPOH6YMGYfjzMcV98L4fhlQ6utJCjDjPebua8wwRki5QFx8mvLrfp4BD3qsqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>365924478</pqid></control><display><type>article</type><title>Asymptotic analysis of a risk process with high dividend barrier</title><source>RePEc</source><source>Elsevier ScienceDirect Journals</source><creator>Frostig, Esther</creator><creatorcontrib>Frostig, Esther</creatorcontrib><description>In this paper we study a risk model with constant high dividend barrier. We apply
Keilson’s (
1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2010.03.005</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>1 queue Regenerative process ; Asymptotic methods ; Busy cycle ; Busy cycle Idle period Cycle maxima Subexponential distribution GI ; Cycle maxima ; Dividends ; Finance ; Financial assets ; Financial models ; GI/G/1 queue ; Idle period ; Interest rates ; Random walk theory ; Regenerative process ; Risk assessment ; Risk management ; Studies ; Subexponential distribution ; Value theory</subject><ispartof>Insurance, mathematics & economics, 2010-08, Vol.47 (1), p.21-26</ispartof><rights>2010 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</citedby><cites>FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2010.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,3996,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/eeeinsuma/v_3a47_3ay_3a2010_3ai_3a1_3ap_3a21-26.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Frostig, Esther</creatorcontrib><title>Asymptotic analysis of a risk process with high dividend barrier</title><title>Insurance, mathematics & economics</title><description>In this paper we study a risk model with constant high dividend barrier. We apply
Keilson’s (
1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.</description><subject>1 queue Regenerative process</subject><subject>Asymptotic methods</subject><subject>Busy cycle</subject><subject>Busy cycle Idle period Cycle maxima Subexponential distribution GI</subject><subject>Cycle maxima</subject><subject>Dividends</subject><subject>Finance</subject><subject>Financial assets</subject><subject>Financial models</subject><subject>GI/G/1 queue</subject><subject>Idle period</subject><subject>Interest rates</subject><subject>Random walk theory</subject><subject>Regenerative process</subject><subject>Risk assessment</subject><subject>Risk management</subject><subject>Studies</subject><subject>Subexponential distribution</subject><subject>Value theory</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUctuFDEQtBBILIF_sHLhNIvf9twSooREisQlnC3H7mG87DywZzfav08vi4LEJYe2pVZVqbqKEMrZmjNuvmzWeaxDWHqI01owXDO5Zky_ISvurGx0q9u3ZIVQ2xjj7HvyodYNY4y3xq7IxWU9DPMyLTnSMIbtoeZKp44GWnL9RecyRaiVPuWlp33-2dOU9znBmOhjKCVD-UjedWFb4dPf_4z8uLl-uLpt7r9_u7u6vG-ilnZpVGt1KzphOhVYSJFppxXvWLQq2ShACvFoUgohOtWlZKRlwikZbYhgRbDyjHw-6aKl3zuoix9yjbDdhhGmXfVOOjyIufZVpNXKWS0cR-T5f8jNtCuYQvXSoF2lrEOQO4FimWot0Pm55CGUg-fMHyvwG_-vAn-swDPpsQKk3p6oBWaILzwAQMJuCH7vZVAWnwPOH6YMGYfjzMcV98L4fhlQ6utJCjDjPebua8wwRki5QFx8mvLrfp4BD3qsqg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Frostig, Esther</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20100801</creationdate><title>Asymptotic analysis of a risk process with high dividend barrier</title><author>Frostig, Esther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c537t-497592f26f4a0adc058541f0c74d7c2e322b6ddaac84fdd63702843c7ace72a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>1 queue Regenerative process</topic><topic>Asymptotic methods</topic><topic>Busy cycle</topic><topic>Busy cycle Idle period Cycle maxima Subexponential distribution GI</topic><topic>Cycle maxima</topic><topic>Dividends</topic><topic>Finance</topic><topic>Financial assets</topic><topic>Financial models</topic><topic>GI/G/1 queue</topic><topic>Idle period</topic><topic>Interest rates</topic><topic>Random walk theory</topic><topic>Regenerative process</topic><topic>Risk assessment</topic><topic>Risk management</topic><topic>Studies</topic><topic>Subexponential distribution</topic><topic>Value theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frostig, Esther</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frostig, Esther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic analysis of a risk process with high dividend barrier</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>47</volume><issue>1</issue><spage>21</spage><epage>26</epage><pages>21-26</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In this paper we study a risk model with constant high dividend barrier. We apply
Keilson’s (
1966) results to the asymptotic distribution of the time until occurrence of a rare event in a regenerative process, and then results of the cycle maxima for random walk to obtain the asymptotic distribution of the time to ruin and the amount of dividends paid until ruin.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2010.03.005</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2010-08, Vol.47 (1), p.21-26 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_838967089 |
source | RePEc; Elsevier ScienceDirect Journals |
subjects | 1 queue Regenerative process Asymptotic methods Busy cycle Busy cycle Idle period Cycle maxima Subexponential distribution GI Cycle maxima Dividends Finance Financial assets Financial models GI/G/1 queue Idle period Interest rates Random walk theory Regenerative process Risk assessment Risk management Studies Subexponential distribution Value theory |
title | Asymptotic analysis of a risk process with high dividend barrier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20analysis%20of%20a%20risk%20process%20with%20high%20dividend%20barrier&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Frostig,%20Esther&rft.date=2010-08-01&rft.volume=47&rft.issue=1&rft.spage=21&rft.epage=26&rft.pages=21-26&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2010.03.005&rft_dat=%3Cproquest_cross%3E2053948691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=365924478&rft_id=info:pmid/&rft_els_id=S0167668710000338&rfr_iscdi=true |