Coupling multi-physics models to cardiac mechanics
We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mas...
Gespeichert in:
Veröffentlicht in: | Progress in biophysics and molecular biology 2011, Vol.104 (1), p.77-88 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Progress in biophysics and molecular biology |
container_volume | 104 |
creator | Nordsletten, D.A. Niederer, S.A. Nash, M.P. Hunter, P.J. Smith, N.P. |
description | We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications. |
doi_str_mv | 10.1016/j.pbiomolbio.2009.11.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_835119664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610709000789</els_id><sourcerecordid>835119664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCyg7VgmePGxnCRUvqRIbWFt-UldJHOwEqX-PUSt1yWZmMefOlQ5CGeACMJD7XTFK53vfpVmUGLcFQIExnKElMFrlQKvyHC0xpm1OANMFuopxhzEugZJLtIC2TQiul6hc-3ns3PCV9XM3uXzc7qNTMeu9Nl3MJp8pEbQTKuuN2ooh3a7RhRVdNDfHvUKfz08f69d88_7ytn7Y5Kou2ZSLmkrbUKysVU1plEntUhJCBEhS1Y2sG0KZJaW1upIVg3RhWtQtiEYz2lQrdHf4Owb_PZs48d5FZbpODMbPkbOqAWgJqRPJDqQKPsZgLB-D60XYc8D8Txjf8ZMw_ieMA_AkLEVvjyWz7I0-BY-GEvB4AJIO8-NM4FE5MyijXTBq4tq7_1t-AXlzgTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>835119664</pqid></control><display><type>article</type><title>Coupling multi-physics models to cardiac mechanics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nordsletten, D.A. ; Niederer, S.A. ; Nash, M.P. ; Hunter, P.J. ; Smith, N.P.</creator><creatorcontrib>Nordsletten, D.A. ; Niederer, S.A. ; Nash, M.P. ; Hunter, P.J. ; Smith, N.P.</creatorcontrib><description>We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2009.11.001</identifier><identifier>PMID: 19917304</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomechanical Phenomena ; Cardiac mechanics ; Coronary Circulation - physiology ; Coronary Vessels - physiology ; Forecasting ; Hemodynamics - physiology ; Humans ; Large deformation mechanics ; Models, Cardiovascular ; Multi-physics modelling ; Myocardial Contraction - physiology ; Ventricular Function - physiology</subject><ispartof>Progress in biophysics and molecular biology, 2011, Vol.104 (1), p.77-88</ispartof><rights>2009</rights><rights>Crown Copyright © 2009. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</citedby><cites>FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610709000789$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19917304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordsletten, D.A.</creatorcontrib><creatorcontrib>Niederer, S.A.</creatorcontrib><creatorcontrib>Nash, M.P.</creatorcontrib><creatorcontrib>Hunter, P.J.</creatorcontrib><creatorcontrib>Smith, N.P.</creatorcontrib><title>Coupling multi-physics models to cardiac mechanics</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.</description><subject>Biomechanical Phenomena</subject><subject>Cardiac mechanics</subject><subject>Coronary Circulation - physiology</subject><subject>Coronary Vessels - physiology</subject><subject>Forecasting</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Large deformation mechanics</subject><subject>Models, Cardiovascular</subject><subject>Multi-physics modelling</subject><subject>Myocardial Contraction - physiology</subject><subject>Ventricular Function - physiology</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCyg7VgmePGxnCRUvqRIbWFt-UldJHOwEqX-PUSt1yWZmMefOlQ5CGeACMJD7XTFK53vfpVmUGLcFQIExnKElMFrlQKvyHC0xpm1OANMFuopxhzEugZJLtIC2TQiul6hc-3ns3PCV9XM3uXzc7qNTMeu9Nl3MJp8pEbQTKuuN2ooh3a7RhRVdNDfHvUKfz08f69d88_7ytn7Y5Kou2ZSLmkrbUKysVU1plEntUhJCBEhS1Y2sG0KZJaW1upIVg3RhWtQtiEYz2lQrdHf4Owb_PZs48d5FZbpODMbPkbOqAWgJqRPJDqQKPsZgLB-D60XYc8D8Txjf8ZMw_ieMA_AkLEVvjyWz7I0-BY-GEvB4AJIO8-NM4FE5MyijXTBq4tq7_1t-AXlzgTQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Nordsletten, D.A.</creator><creator>Niederer, S.A.</creator><creator>Nash, M.P.</creator><creator>Hunter, P.J.</creator><creator>Smith, N.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2011</creationdate><title>Coupling multi-physics models to cardiac mechanics</title><author>Nordsletten, D.A. ; Niederer, S.A. ; Nash, M.P. ; Hunter, P.J. ; Smith, N.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomechanical Phenomena</topic><topic>Cardiac mechanics</topic><topic>Coronary Circulation - physiology</topic><topic>Coronary Vessels - physiology</topic><topic>Forecasting</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Large deformation mechanics</topic><topic>Models, Cardiovascular</topic><topic>Multi-physics modelling</topic><topic>Myocardial Contraction - physiology</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordsletten, D.A.</creatorcontrib><creatorcontrib>Niederer, S.A.</creatorcontrib><creatorcontrib>Nash, M.P.</creatorcontrib><creatorcontrib>Hunter, P.J.</creatorcontrib><creatorcontrib>Smith, N.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordsletten, D.A.</au><au>Niederer, S.A.</au><au>Nash, M.P.</au><au>Hunter, P.J.</au><au>Smith, N.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling multi-physics models to cardiac mechanics</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2011</date><risdate>2011</risdate><volume>104</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19917304</pmid><doi>10.1016/j.pbiomolbio.2009.11.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0079-6107 |
ispartof | Progress in biophysics and molecular biology, 2011, Vol.104 (1), p.77-88 |
issn | 0079-6107 1873-1732 |
language | eng |
recordid | cdi_proquest_miscellaneous_835119664 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biomechanical Phenomena Cardiac mechanics Coronary Circulation - physiology Coronary Vessels - physiology Forecasting Hemodynamics - physiology Humans Large deformation mechanics Models, Cardiovascular Multi-physics modelling Myocardial Contraction - physiology Ventricular Function - physiology |
title | Coupling multi-physics models to cardiac mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20multi-physics%20models%20to%20cardiac%20mechanics&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Nordsletten,%20D.A.&rft.date=2011&rft.volume=104&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2009.11.001&rft_dat=%3Cproquest_cross%3E835119664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=835119664&rft_id=info:pmid/19917304&rft_els_id=S0079610709000789&rfr_iscdi=true |