Coupling multi-physics models to cardiac mechanics

We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2011, Vol.104 (1), p.77-88
Hauptverfasser: Nordsletten, D.A., Niederer, S.A., Nash, M.P., Hunter, P.J., Smith, N.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 77
container_title Progress in biophysics and molecular biology
container_volume 104
creator Nordsletten, D.A.
Niederer, S.A.
Nash, M.P.
Hunter, P.J.
Smith, N.P.
description We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.
doi_str_mv 10.1016/j.pbiomolbio.2009.11.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_835119664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610709000789</els_id><sourcerecordid>835119664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCyg7VgmePGxnCRUvqRIbWFt-UldJHOwEqX-PUSt1yWZmMefOlQ5CGeACMJD7XTFK53vfpVmUGLcFQIExnKElMFrlQKvyHC0xpm1OANMFuopxhzEugZJLtIC2TQiul6hc-3ns3PCV9XM3uXzc7qNTMeu9Nl3MJp8pEbQTKuuN2ooh3a7RhRVdNDfHvUKfz08f69d88_7ytn7Y5Kou2ZSLmkrbUKysVU1plEntUhJCBEhS1Y2sG0KZJaW1upIVg3RhWtQtiEYz2lQrdHf4Owb_PZs48d5FZbpODMbPkbOqAWgJqRPJDqQKPsZgLB-D60XYc8D8Txjf8ZMw_ieMA_AkLEVvjyWz7I0-BY-GEvB4AJIO8-NM4FE5MyijXTBq4tq7_1t-AXlzgTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>835119664</pqid></control><display><type>article</type><title>Coupling multi-physics models to cardiac mechanics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nordsletten, D.A. ; Niederer, S.A. ; Nash, M.P. ; Hunter, P.J. ; Smith, N.P.</creator><creatorcontrib>Nordsletten, D.A. ; Niederer, S.A. ; Nash, M.P. ; Hunter, P.J. ; Smith, N.P.</creatorcontrib><description>We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2009.11.001</identifier><identifier>PMID: 19917304</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biomechanical Phenomena ; Cardiac mechanics ; Coronary Circulation - physiology ; Coronary Vessels - physiology ; Forecasting ; Hemodynamics - physiology ; Humans ; Large deformation mechanics ; Models, Cardiovascular ; Multi-physics modelling ; Myocardial Contraction - physiology ; Ventricular Function - physiology</subject><ispartof>Progress in biophysics and molecular biology, 2011, Vol.104 (1), p.77-88</ispartof><rights>2009</rights><rights>Crown Copyright © 2009. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</citedby><cites>FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0079610709000789$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19917304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordsletten, D.A.</creatorcontrib><creatorcontrib>Niederer, S.A.</creatorcontrib><creatorcontrib>Nash, M.P.</creatorcontrib><creatorcontrib>Hunter, P.J.</creatorcontrib><creatorcontrib>Smith, N.P.</creatorcontrib><title>Coupling multi-physics models to cardiac mechanics</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.</description><subject>Biomechanical Phenomena</subject><subject>Cardiac mechanics</subject><subject>Coronary Circulation - physiology</subject><subject>Coronary Vessels - physiology</subject><subject>Forecasting</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Large deformation mechanics</subject><subject>Models, Cardiovascular</subject><subject>Multi-physics modelling</subject><subject>Myocardial Contraction - physiology</subject><subject>Ventricular Function - physiology</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCyg7VgmePGxnCRUvqRIbWFt-UldJHOwEqX-PUSt1yWZmMefOlQ5CGeACMJD7XTFK53vfpVmUGLcFQIExnKElMFrlQKvyHC0xpm1OANMFuopxhzEugZJLtIC2TQiul6hc-3ns3PCV9XM3uXzc7qNTMeu9Nl3MJp8pEbQTKuuN2ooh3a7RhRVdNDfHvUKfz08f69d88_7ytn7Y5Kou2ZSLmkrbUKysVU1plEntUhJCBEhS1Y2sG0KZJaW1upIVg3RhWtQtiEYz2lQrdHf4Owb_PZs48d5FZbpODMbPkbOqAWgJqRPJDqQKPsZgLB-D60XYc8D8Txjf8ZMw_ieMA_AkLEVvjyWz7I0-BY-GEvB4AJIO8-NM4FE5MyijXTBq4tq7_1t-AXlzgTQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Nordsletten, D.A.</creator><creator>Niederer, S.A.</creator><creator>Nash, M.P.</creator><creator>Hunter, P.J.</creator><creator>Smith, N.P.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2011</creationdate><title>Coupling multi-physics models to cardiac mechanics</title><author>Nordsletten, D.A. ; Niederer, S.A. ; Nash, M.P. ; Hunter, P.J. ; Smith, N.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-a47bf570cffc52ece002bb666a1b6345b45678f62ffd3b38166a8da491a5d8753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomechanical Phenomena</topic><topic>Cardiac mechanics</topic><topic>Coronary Circulation - physiology</topic><topic>Coronary Vessels - physiology</topic><topic>Forecasting</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Large deformation mechanics</topic><topic>Models, Cardiovascular</topic><topic>Multi-physics modelling</topic><topic>Myocardial Contraction - physiology</topic><topic>Ventricular Function - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordsletten, D.A.</creatorcontrib><creatorcontrib>Niederer, S.A.</creatorcontrib><creatorcontrib>Nash, M.P.</creatorcontrib><creatorcontrib>Hunter, P.J.</creatorcontrib><creatorcontrib>Smith, N.P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordsletten, D.A.</au><au>Niederer, S.A.</au><au>Nash, M.P.</au><au>Hunter, P.J.</au><au>Smith, N.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling multi-physics models to cardiac mechanics</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2011</date><risdate>2011</risdate><volume>104</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian–Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19917304</pmid><doi>10.1016/j.pbiomolbio.2009.11.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2011, Vol.104 (1), p.77-88
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_835119664
source MEDLINE; Elsevier ScienceDirect Journals
subjects Biomechanical Phenomena
Cardiac mechanics
Coronary Circulation - physiology
Coronary Vessels - physiology
Forecasting
Hemodynamics - physiology
Humans
Large deformation mechanics
Models, Cardiovascular
Multi-physics modelling
Myocardial Contraction - physiology
Ventricular Function - physiology
title Coupling multi-physics models to cardiac mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20multi-physics%20models%20to%20cardiac%20mechanics&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Nordsletten,%20D.A.&rft.date=2011&rft.volume=104&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2009.11.001&rft_dat=%3Cproquest_cross%3E835119664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=835119664&rft_id=info:pmid/19917304&rft_els_id=S0079610709000789&rfr_iscdi=true