Transport of riboflavin into yeast cells

Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1976-06, Vol.251 (11), p.3221-3228
Hauptverfasser: Perl, M, Kearney, E B, Singer, T P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3228
container_issue 11
container_start_page 3221
container_title The Journal of biological chemistry
container_volume 251
creator Perl, M
Kearney, E B
Singer, T P
description Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase of anaerobic growth and declines sharply in the late log phase. In aerobically grown cells activity is substantially lower at all stages of growth. In the assay devised for its measurement, transport activity shows a sharp pH optimum at pH 7.5, a strong temperature dependence (EA = 23,100 cal/mol), and saturation kinetics with respect to riboflavin (Km = 15 muM), characteristics consistent with a carrier-mediated mechanism. Monovalent inorganic cations, particularly K+ and Rb+, stimulate riboflavin uptake, while certain organic cations are inhibitory. Besides riboflavin only 7-methylriboflavin, 8-methylriboflavin, and 5-deazaflavin have been found to serve as substrates, while lumiflavin, tetraacetylriboflavin, and N10-[4'-carboxybutyl]-7,8-dimethylisoalloxazine do not, although a number of flavin analogs in which the ribityl side chain is modified are good competitive inhibitors of riboflavin uptake. Compounds resembling the ribityl side chain, such as sugars and sugar alcohols, do not inhibit. An apparent inhibition of uptake by D-glucose, D-mannose, and D-fructose, which develops in the course of assay, proved to result from stimulation of an opposing process, the release of riboflavin from the cells.
doi_str_mv 10.1016/S0021-9258(17)33426-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_83419377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>83419377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-713ce7433f2f611454ab0f94f62b699711a3ce4a39afe7e3c98deea333920f283</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoNMdE7_gCAUBJkX1ZyctGkuZfgFAy-c4F1Iu8RF2mUmnbJ_b7uNnZtz8T7v-XgJuQJ6BxTy-3dKGaSSZcUYxC0iZ3kqj8gQaIEpZvA5IMMDckrOYvymXXEJJ2SQcy6GZDwLehlXPrSJt0lwpbe1_nXLxC1bn2yMjm1SmbqO5-TY6jqai30fkY-nx9nkJZ2-Pb9OHqZphSJvUwFYGcERLbM5AM-4LqmV3OaszKUUALoDuEaprREGK1nMjdGIKBm1rMARudnNXQX_szaxVY2L_QV6afw6qgI5SBSiA7MdWAUfYzBWrYJrdNgooKqPR23jUf3vCoTaxqNk57vcL1iXjZkfXH0enXi9Exfua_HnglGl89XCNIploAAUMgb4DzDMalA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>83419377</pqid></control><display><type>article</type><title>Transport of riboflavin into yeast cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Perl, M ; Kearney, E B ; Singer, T P</creator><creatorcontrib>Perl, M ; Kearney, E B ; Singer, T P</creatorcontrib><description>Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase of anaerobic growth and declines sharply in the late log phase. In aerobically grown cells activity is substantially lower at all stages of growth. In the assay devised for its measurement, transport activity shows a sharp pH optimum at pH 7.5, a strong temperature dependence (EA = 23,100 cal/mol), and saturation kinetics with respect to riboflavin (Km = 15 muM), characteristics consistent with a carrier-mediated mechanism. Monovalent inorganic cations, particularly K+ and Rb+, stimulate riboflavin uptake, while certain organic cations are inhibitory. Besides riboflavin only 7-methylriboflavin, 8-methylriboflavin, and 5-deazaflavin have been found to serve as substrates, while lumiflavin, tetraacetylriboflavin, and N10-[4'-carboxybutyl]-7,8-dimethylisoalloxazine do not, although a number of flavin analogs in which the ribityl side chain is modified are good competitive inhibitors of riboflavin uptake. Compounds resembling the ribityl side chain, such as sugars and sugar alcohols, do not inhibit. An apparent inhibition of uptake by D-glucose, D-mannose, and D-fructose, which develops in the course of assay, proved to result from stimulation of an opposing process, the release of riboflavin from the cells.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(17)33426-9</identifier><identifier>PMID: 6447</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Anaerobiosis ; Binding, Competitive ; Biological Transport ; Biological Transport, Active ; Calorimetry ; Cations, Monovalent ; Cell Division ; Flavins - pharmacology ; Glucose - pharmacology ; Hydrogen-Ion Concentration ; Kinetics ; Magnesium - pharmacology ; Mutation ; Potassium - pharmacology ; Riboflavin - metabolism ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - metabolism ; Temperature ; Thermodynamics</subject><ispartof>The Journal of biological chemistry, 1976-06, Vol.251 (11), p.3221-3228</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-713ce7433f2f611454ab0f94f62b699711a3ce4a39afe7e3c98deea333920f283</citedby><cites>FETCH-LOGICAL-c376t-713ce7433f2f611454ab0f94f62b699711a3ce4a39afe7e3c98deea333920f283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6447$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perl, M</creatorcontrib><creatorcontrib>Kearney, E B</creatorcontrib><creatorcontrib>Singer, T P</creatorcontrib><title>Transport of riboflavin into yeast cells</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase of anaerobic growth and declines sharply in the late log phase. In aerobically grown cells activity is substantially lower at all stages of growth. In the assay devised for its measurement, transport activity shows a sharp pH optimum at pH 7.5, a strong temperature dependence (EA = 23,100 cal/mol), and saturation kinetics with respect to riboflavin (Km = 15 muM), characteristics consistent with a carrier-mediated mechanism. Monovalent inorganic cations, particularly K+ and Rb+, stimulate riboflavin uptake, while certain organic cations are inhibitory. Besides riboflavin only 7-methylriboflavin, 8-methylriboflavin, and 5-deazaflavin have been found to serve as substrates, while lumiflavin, tetraacetylriboflavin, and N10-[4'-carboxybutyl]-7,8-dimethylisoalloxazine do not, although a number of flavin analogs in which the ribityl side chain is modified are good competitive inhibitors of riboflavin uptake. Compounds resembling the ribityl side chain, such as sugars and sugar alcohols, do not inhibit. An apparent inhibition of uptake by D-glucose, D-mannose, and D-fructose, which develops in the course of assay, proved to result from stimulation of an opposing process, the release of riboflavin from the cells.</description><subject>Anaerobiosis</subject><subject>Binding, Competitive</subject><subject>Biological Transport</subject><subject>Biological Transport, Active</subject><subject>Calorimetry</subject><subject>Cations, Monovalent</subject><subject>Cell Division</subject><subject>Flavins - pharmacology</subject><subject>Glucose - pharmacology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Magnesium - pharmacology</subject><subject>Mutation</subject><subject>Potassium - pharmacology</subject><subject>Riboflavin - metabolism</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kF1LwzAUhoNMdE7_gCAUBJkX1ZyctGkuZfgFAy-c4F1Iu8RF2mUmnbJ_b7uNnZtz8T7v-XgJuQJ6BxTy-3dKGaSSZcUYxC0iZ3kqj8gQaIEpZvA5IMMDckrOYvymXXEJJ2SQcy6GZDwLehlXPrSJt0lwpbe1_nXLxC1bn2yMjm1SmbqO5-TY6jqai30fkY-nx9nkJZ2-Pb9OHqZphSJvUwFYGcERLbM5AM-4LqmV3OaszKUUALoDuEaprREGK1nMjdGIKBm1rMARudnNXQX_szaxVY2L_QV6afw6qgI5SBSiA7MdWAUfYzBWrYJrdNgooKqPR23jUf3vCoTaxqNk57vcL1iXjZkfXH0enXi9Exfua_HnglGl89XCNIploAAUMgb4DzDMalA</recordid><startdate>19760610</startdate><enddate>19760610</enddate><creator>Perl, M</creator><creator>Kearney, E B</creator><creator>Singer, T P</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19760610</creationdate><title>Transport of riboflavin into yeast cells</title><author>Perl, M ; Kearney, E B ; Singer, T P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-713ce7433f2f611454ab0f94f62b699711a3ce4a39afe7e3c98deea333920f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Anaerobiosis</topic><topic>Binding, Competitive</topic><topic>Biological Transport</topic><topic>Biological Transport, Active</topic><topic>Calorimetry</topic><topic>Cations, Monovalent</topic><topic>Cell Division</topic><topic>Flavins - pharmacology</topic><topic>Glucose - pharmacology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Magnesium - pharmacology</topic><topic>Mutation</topic><topic>Potassium - pharmacology</topic><topic>Riboflavin - metabolism</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perl, M</creatorcontrib><creatorcontrib>Kearney, E B</creatorcontrib><creatorcontrib>Singer, T P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perl, M</au><au>Kearney, E B</au><au>Singer, T P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of riboflavin into yeast cells</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1976-06-10</date><risdate>1976</risdate><volume>251</volume><issue>11</issue><spage>3221</spage><epage>3228</epage><pages>3221-3228</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Riboflavin-requiring mutants of Saccharomyces cerevisiae are able to transport 14C-labeled riboflavin into the cell, although no significant transport is seen in commercial yeast or in the parent strain from which the mutants were derived. Transport activity is greatest in the early to mid-log phase of anaerobic growth and declines sharply in the late log phase. In aerobically grown cells activity is substantially lower at all stages of growth. In the assay devised for its measurement, transport activity shows a sharp pH optimum at pH 7.5, a strong temperature dependence (EA = 23,100 cal/mol), and saturation kinetics with respect to riboflavin (Km = 15 muM), characteristics consistent with a carrier-mediated mechanism. Monovalent inorganic cations, particularly K+ and Rb+, stimulate riboflavin uptake, while certain organic cations are inhibitory. Besides riboflavin only 7-methylriboflavin, 8-methylriboflavin, and 5-deazaflavin have been found to serve as substrates, while lumiflavin, tetraacetylriboflavin, and N10-[4'-carboxybutyl]-7,8-dimethylisoalloxazine do not, although a number of flavin analogs in which the ribityl side chain is modified are good competitive inhibitors of riboflavin uptake. Compounds resembling the ribityl side chain, such as sugars and sugar alcohols, do not inhibit. An apparent inhibition of uptake by D-glucose, D-mannose, and D-fructose, which develops in the course of assay, proved to result from stimulation of an opposing process, the release of riboflavin from the cells.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>6447</pmid><doi>10.1016/S0021-9258(17)33426-9</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1976-06, Vol.251 (11), p.3221-3228
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_83419377
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Anaerobiosis
Binding, Competitive
Biological Transport
Biological Transport, Active
Calorimetry
Cations, Monovalent
Cell Division
Flavins - pharmacology
Glucose - pharmacology
Hydrogen-Ion Concentration
Kinetics
Magnesium - pharmacology
Mutation
Potassium - pharmacology
Riboflavin - metabolism
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - metabolism
Temperature
Thermodynamics
title Transport of riboflavin into yeast cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20riboflavin%20into%20yeast%20cells&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Perl,%20M&rft.date=1976-06-10&rft.volume=251&rft.issue=11&rft.spage=3221&rft.epage=3228&rft.pages=3221-3228&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/S0021-9258(17)33426-9&rft_dat=%3Cproquest_cross%3E83419377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=83419377&rft_id=info:pmid/6447&rfr_iscdi=true