Expanding the detection efficiency of silicon drift detectors

To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the developme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2010-12, Vol.624 (2), p.270-276
Hauptverfasser: Schlosser, D.M., Lechner, P., Lutz, G., Niculae, A., Soltau, H., Strüder, L., Eckhardt, R., Hermenau, K., Schaller, G., Schopper, F., Jaritschin, O., Liebel, A., Simsek, A., Fiorini, C., Longoni, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 2
container_start_page 270
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 624
creator Schlosser, D.M.
Lechner, P.
Lutz, G.
Niculae, A.
Soltau, H.
Strüder, L.
Eckhardt, R.
Hermenau, K.
Schaller, G.
Schopper, F.
Jaritschin, O.
Liebel, A.
Simsek, A.
Fiorini, C.
Longoni, A.
description To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.
doi_str_mv 10.1016/j.nima.2010.04.038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831209216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900210008879</els_id><sourcerecordid>831209216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-fc20e7652d918e0e31e2e5dd8955d203855b275f87e34cf2286b37f56cdb5b463</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBTj1xqklcZsmleCApvFHmsQFzlGbOJCpa0bSIfbtSdnO-GLJes_2-xFyzWjBKKtv18XgNm0BNA1oVdBSnpAZkwLyhov6lMySSOYNpXBOLmJc01SNkDNyv_zZtoNxw0c2fmJmcEQ9Oj9kaK3TDge9z7zNouudTlMTnB2PKh_iJTmzbR_x6tjn5P1x-bZ4zlevTy-Lh1WuqwrG3GqgKGoOpmESKZYMAbkxsuHcQHqW8w4Et1JgWWkLIOuuFJbX2nS8q-pyTm4Oe7fBf-0wjmrjosa-bwf0u6hkyYA2wCYlHJQ6-BgDWrUNiUzYK0bVhEqt1YRKTagUrVS6nkx3BxOmDN8Og4p_0dG4kIIq491_9l_Y1HHM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831209216</pqid></control><display><type>article</type><title>Expanding the detection efficiency of silicon drift detectors</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Schlosser, D.M. ; Lechner, P. ; Lutz, G. ; Niculae, A. ; Soltau, H. ; Strüder, L. ; Eckhardt, R. ; Hermenau, K. ; Schaller, G. ; Schopper, F. ; Jaritschin, O. ; Liebel, A. ; Simsek, A. ; Fiorini, C. ; Longoni, A.</creator><creatorcontrib>Schlosser, D.M. ; Lechner, P. ; Lutz, G. ; Niculae, A. ; Soltau, H. ; Strüder, L. ; Eckhardt, R. ; Hermenau, K. ; Schaller, G. ; Schopper, F. ; Jaritschin, O. ; Liebel, A. ; Simsek, A. ; Fiorini, C. ; Longoni, A.</creatorcontrib><description>To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2010.04.038</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Accelerators ; Counting ; Detectors ; Drift ; Energy resolution ; Entrances ; Gamma ray detection ; Hard X-ray ; Light elements ; Low X-ray energy ; Optimization ; Quantum efficiency ; Scintillator ; Silicon ; Silicon drift detector (SDD) ; X-ray detector</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2010-12, Vol.624 (2), p.270-276</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-fc20e7652d918e0e31e2e5dd8955d203855b275f87e34cf2286b37f56cdb5b463</citedby><cites>FETCH-LOGICAL-c442t-fc20e7652d918e0e31e2e5dd8955d203855b275f87e34cf2286b37f56cdb5b463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2010.04.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Schlosser, D.M.</creatorcontrib><creatorcontrib>Lechner, P.</creatorcontrib><creatorcontrib>Lutz, G.</creatorcontrib><creatorcontrib>Niculae, A.</creatorcontrib><creatorcontrib>Soltau, H.</creatorcontrib><creatorcontrib>Strüder, L.</creatorcontrib><creatorcontrib>Eckhardt, R.</creatorcontrib><creatorcontrib>Hermenau, K.</creatorcontrib><creatorcontrib>Schaller, G.</creatorcontrib><creatorcontrib>Schopper, F.</creatorcontrib><creatorcontrib>Jaritschin, O.</creatorcontrib><creatorcontrib>Liebel, A.</creatorcontrib><creatorcontrib>Simsek, A.</creatorcontrib><creatorcontrib>Fiorini, C.</creatorcontrib><creatorcontrib>Longoni, A.</creatorcontrib><title>Expanding the detection efficiency of silicon drift detectors</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.</description><subject>Accelerators</subject><subject>Counting</subject><subject>Detectors</subject><subject>Drift</subject><subject>Energy resolution</subject><subject>Entrances</subject><subject>Gamma ray detection</subject><subject>Hard X-ray</subject><subject>Light elements</subject><subject>Low X-ray energy</subject><subject>Optimization</subject><subject>Quantum efficiency</subject><subject>Scintillator</subject><subject>Silicon</subject><subject>Silicon drift detector (SDD)</subject><subject>X-ray detector</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwzAMxSMEEmPwBTj1xqklcZsmleCApvFHmsQFzlGbOJCpa0bSIfbtSdnO-GLJes_2-xFyzWjBKKtv18XgNm0BNA1oVdBSnpAZkwLyhov6lMySSOYNpXBOLmJc01SNkDNyv_zZtoNxw0c2fmJmcEQ9Oj9kaK3TDge9z7zNouudTlMTnB2PKh_iJTmzbR_x6tjn5P1x-bZ4zlevTy-Lh1WuqwrG3GqgKGoOpmESKZYMAbkxsuHcQHqW8w4Et1JgWWkLIOuuFJbX2nS8q-pyTm4Oe7fBf-0wjmrjosa-bwf0u6hkyYA2wCYlHJQ6-BgDWrUNiUzYK0bVhEqt1YRKTagUrVS6nkx3BxOmDN8Og4p_0dG4kIIq491_9l_Y1HHM</recordid><startdate>20101211</startdate><enddate>20101211</enddate><creator>Schlosser, D.M.</creator><creator>Lechner, P.</creator><creator>Lutz, G.</creator><creator>Niculae, A.</creator><creator>Soltau, H.</creator><creator>Strüder, L.</creator><creator>Eckhardt, R.</creator><creator>Hermenau, K.</creator><creator>Schaller, G.</creator><creator>Schopper, F.</creator><creator>Jaritschin, O.</creator><creator>Liebel, A.</creator><creator>Simsek, A.</creator><creator>Fiorini, C.</creator><creator>Longoni, A.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20101211</creationdate><title>Expanding the detection efficiency of silicon drift detectors</title><author>Schlosser, D.M. ; Lechner, P. ; Lutz, G. ; Niculae, A. ; Soltau, H. ; Strüder, L. ; Eckhardt, R. ; Hermenau, K. ; Schaller, G. ; Schopper, F. ; Jaritschin, O. ; Liebel, A. ; Simsek, A. ; Fiorini, C. ; Longoni, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-fc20e7652d918e0e31e2e5dd8955d203855b275f87e34cf2286b37f56cdb5b463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accelerators</topic><topic>Counting</topic><topic>Detectors</topic><topic>Drift</topic><topic>Energy resolution</topic><topic>Entrances</topic><topic>Gamma ray detection</topic><topic>Hard X-ray</topic><topic>Light elements</topic><topic>Low X-ray energy</topic><topic>Optimization</topic><topic>Quantum efficiency</topic><topic>Scintillator</topic><topic>Silicon</topic><topic>Silicon drift detector (SDD)</topic><topic>X-ray detector</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlosser, D.M.</creatorcontrib><creatorcontrib>Lechner, P.</creatorcontrib><creatorcontrib>Lutz, G.</creatorcontrib><creatorcontrib>Niculae, A.</creatorcontrib><creatorcontrib>Soltau, H.</creatorcontrib><creatorcontrib>Strüder, L.</creatorcontrib><creatorcontrib>Eckhardt, R.</creatorcontrib><creatorcontrib>Hermenau, K.</creatorcontrib><creatorcontrib>Schaller, G.</creatorcontrib><creatorcontrib>Schopper, F.</creatorcontrib><creatorcontrib>Jaritschin, O.</creatorcontrib><creatorcontrib>Liebel, A.</creatorcontrib><creatorcontrib>Simsek, A.</creatorcontrib><creatorcontrib>Fiorini, C.</creatorcontrib><creatorcontrib>Longoni, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlosser, D.M.</au><au>Lechner, P.</au><au>Lutz, G.</au><au>Niculae, A.</au><au>Soltau, H.</au><au>Strüder, L.</au><au>Eckhardt, R.</au><au>Hermenau, K.</au><au>Schaller, G.</au><au>Schopper, F.</au><au>Jaritschin, O.</au><au>Liebel, A.</au><au>Simsek, A.</au><au>Fiorini, C.</au><au>Longoni, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Expanding the detection efficiency of silicon drift detectors</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2010-12-11</date><risdate>2010</risdate><volume>624</volume><issue>2</issue><spage>270</spage><epage>276</epage><pages>270-276</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>To expand the detection efficiency Silicon Drift Detectors (SDDs) with various customized radiation entrance windows, optimized detector areas and geometries have been developed. Optimum values for energy resolution, peak to background ratio (P/B) and high count rate capability support the development. Detailed results on sensors optimized for light element detection down to Boron or even lower will be reported. New developments for detecting medium and high X-ray energies by increasing the effective detector thickness will be presented. Gamma-ray detectors consisting of a SDD coupled to scintillators like CsI(Tl) and LaBr 3(Ce) have been examined. Results of the energy resolution for the 137Cs 662 keV line and the light yield (LY) of such detector systems will be reported.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2010.04.038</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2010-12, Vol.624 (2), p.270-276
issn 0168-9002
1872-9576
language eng
recordid cdi_proquest_miscellaneous_831209216
source Elsevier ScienceDirect Journals Complete
subjects Accelerators
Counting
Detectors
Drift
Energy resolution
Entrances
Gamma ray detection
Hard X-ray
Light elements
Low X-ray energy
Optimization
Quantum efficiency
Scintillator
Silicon
Silicon drift detector (SDD)
X-ray detector
title Expanding the detection efficiency of silicon drift detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Expanding%20the%20detection%20efficiency%20of%20silicon%20drift%20detectors&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Schlosser,%20D.M.&rft.date=2010-12-11&rft.volume=624&rft.issue=2&rft.spage=270&rft.epage=276&rft.pages=270-276&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2010.04.038&rft_dat=%3Cproquest_cross%3E831209216%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831209216&rft_id=info:pmid/&rft_els_id=S0168900210008879&rfr_iscdi=true