Multiple steady state current–voltage characteristics in drift–diffusion modelisation of N type and semi-insulating GaAs Gunn structures

Theoretical and numerical investigations of carriers transport in N–Semi-Insulating (SI)–N and P–SI–P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid-state electronics 2010-12, Vol.54 (12), p.1511-1519
1. Verfasser: Manifacier, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1519
container_issue 12
container_start_page 1511
container_title Solid-state electronics
container_volume 54
creator Manifacier, J.C.
description Theoretical and numerical investigations of carriers transport in N–Semi-Insulating (SI)–N and P–SI–P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n / dE) < 0, v n being the electron drift velocity. Convergence and stability problems occur only, for the steady state numerical simulation, in long N +–N–N + or N +–SI(N −)–N + diodes. SI(N −) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current–voltage solutions when numerical modelisation is made using the drift–diffusion model.
doi_str_mv 10.1016/j.sse.2010.07.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831208794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038110110002807</els_id><sourcerecordid>831208794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4e9b2c192a1675bc4a4f31af8266cb41b80ae728db53db2e0642ca187521958c3</originalsourceid><addsrcrecordid>eNp9kL2OFDEMgCMEEsvBA9ClQVSzJJl_UZ1OsCAd0EAdeRLnyCqbWeLkpO14ADrekCchqz1RUlm2P9vyx9hLKbZSyOHNfkuEWyVqLsatkPIR28hpnBvVif4x2wjRTo2s6FP2jGgvhFCDFBv261MJ2R8DcsoI9lQDZOSmpIQx__n5-34NGe5q5TskMBmTp-wNcR-5Td6dEeudK-TXyA-rxeAJ8jlZHf_M8-mIHKLlhAff-Egl1G684zu4Jr4rMdaLqZhcEtJz9sRBIHzxEK_Yt_fvvt58aG6_7D7eXN82pu3n3HQ4L8rIWYEcxn4xHXSuleAmNQxm6eQyCcBRTXbpW7soFEOnDFQbvZJzP5n2ir2-7D2m9UdByvrgyWAIEHEtpKdWKlHldZWUF9KklSih08fkD5BOWgp9Fq_3uorXZ_FajLqKrzOvHrYDGQguQTSe_g2qthVqkmPl3l44rK_ee0yajMdo0PqEJmu7-v9c-Qtsip2b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831208794</pqid></control><display><type>article</type><title>Multiple steady state current–voltage characteristics in drift–diffusion modelisation of N type and semi-insulating GaAs Gunn structures</title><source>Access via ScienceDirect (Elsevier)</source><creator>Manifacier, J.C.</creator><creatorcontrib>Manifacier, J.C.</creatorcontrib><description>Theoretical and numerical investigations of carriers transport in N–Semi-Insulating (SI)–N and P–SI–P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n / dE) &lt; 0, v n being the electron drift velocity. Convergence and stability problems occur only, for the steady state numerical simulation, in long N +–N–N + or N +–SI(N −)–N + diodes. SI(N −) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current–voltage solutions when numerical modelisation is made using the drift–diffusion model.</description><identifier>ISSN: 0038-1101</identifier><identifier>EISSN: 1879-2405</identifier><identifier>DOI: 10.1016/j.sse.2010.07.011</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Diodes ; Drift ; Electric fields ; Electronics ; Exact sciences and technology ; GaAs ; Gallium arsenide ; Gunn effect devices ; InP ; I– V curve ; Mathematical models ; P–SI–P and N–SI–N diodes ; Semi-insulating ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stability ; Steady state</subject><ispartof>Solid-state electronics, 2010-12, Vol.54 (12), p.1511-1519</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4e9b2c192a1675bc4a4f31af8266cb41b80ae728db53db2e0642ca187521958c3</citedby><cites>FETCH-LOGICAL-c359t-4e9b2c192a1675bc4a4f31af8266cb41b80ae728db53db2e0642ca187521958c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sse.2010.07.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23302817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Manifacier, J.C.</creatorcontrib><title>Multiple steady state current–voltage characteristics in drift–diffusion modelisation of N type and semi-insulating GaAs Gunn structures</title><title>Solid-state electronics</title><description>Theoretical and numerical investigations of carriers transport in N–Semi-Insulating (SI)–N and P–SI–P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n / dE) &lt; 0, v n being the electron drift velocity. Convergence and stability problems occur only, for the steady state numerical simulation, in long N +–N–N + or N +–SI(N −)–N + diodes. SI(N −) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current–voltage solutions when numerical modelisation is made using the drift–diffusion model.</description><subject>Applied sciences</subject><subject>Diodes</subject><subject>Drift</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>GaAs</subject><subject>Gallium arsenide</subject><subject>Gunn effect devices</subject><subject>InP</subject><subject>I– V curve</subject><subject>Mathematical models</subject><subject>P–SI–P and N–SI–N diodes</subject><subject>Semi-insulating</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stability</subject><subject>Steady state</subject><issn>0038-1101</issn><issn>1879-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL2OFDEMgCMEEsvBA9ClQVSzJJl_UZ1OsCAd0EAdeRLnyCqbWeLkpO14ADrekCchqz1RUlm2P9vyx9hLKbZSyOHNfkuEWyVqLsatkPIR28hpnBvVif4x2wjRTo2s6FP2jGgvhFCDFBv261MJ2R8DcsoI9lQDZOSmpIQx__n5-34NGe5q5TskMBmTp-wNcR-5Td6dEeudK-TXyA-rxeAJ8jlZHf_M8-mIHKLlhAff-Egl1G684zu4Jr4rMdaLqZhcEtJz9sRBIHzxEK_Yt_fvvt58aG6_7D7eXN82pu3n3HQ4L8rIWYEcxn4xHXSuleAmNQxm6eQyCcBRTXbpW7soFEOnDFQbvZJzP5n2ir2-7D2m9UdByvrgyWAIEHEtpKdWKlHldZWUF9KklSih08fkD5BOWgp9Fq_3uorXZ_FajLqKrzOvHrYDGQguQTSe_g2qthVqkmPl3l44rK_ee0yajMdo0PqEJmu7-v9c-Qtsip2b</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Manifacier, J.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Multiple steady state current–voltage characteristics in drift–diffusion modelisation of N type and semi-insulating GaAs Gunn structures</title><author>Manifacier, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4e9b2c192a1675bc4a4f31af8266cb41b80ae728db53db2e0642ca187521958c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Diodes</topic><topic>Drift</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>GaAs</topic><topic>Gallium arsenide</topic><topic>Gunn effect devices</topic><topic>InP</topic><topic>I– V curve</topic><topic>Mathematical models</topic><topic>P–SI–P and N–SI–N diodes</topic><topic>Semi-insulating</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stability</topic><topic>Steady state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manifacier, J.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid-state electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manifacier, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple steady state current–voltage characteristics in drift–diffusion modelisation of N type and semi-insulating GaAs Gunn structures</atitle><jtitle>Solid-state electronics</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>54</volume><issue>12</issue><spage>1511</spage><epage>1519</epage><pages>1511-1519</pages><issn>0038-1101</issn><eissn>1879-2405</eissn><abstract>Theoretical and numerical investigations of carriers transport in N–Semi-Insulating (SI)–N and P–SI–P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n / dE) &lt; 0, v n being the electron drift velocity. Convergence and stability problems occur only, for the steady state numerical simulation, in long N +–N–N + or N +–SI(N −)–N + diodes. SI(N −) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current–voltage solutions when numerical modelisation is made using the drift–diffusion model.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.sse.2010.07.011</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-1101
ispartof Solid-state electronics, 2010-12, Vol.54 (12), p.1511-1519
issn 0038-1101
1879-2405
language eng
recordid cdi_proquest_miscellaneous_831208794
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Diodes
Drift
Electric fields
Electronics
Exact sciences and technology
GaAs
Gallium arsenide
Gunn effect devices
InP
I– V curve
Mathematical models
P–SI–P and N–SI–N diodes
Semi-insulating
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Stability
Steady state
title Multiple steady state current–voltage characteristics in drift–diffusion modelisation of N type and semi-insulating GaAs Gunn structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20steady%20state%20current%E2%80%93voltage%20characteristics%20in%20drift%E2%80%93diffusion%20modelisation%20of%20N%20type%20and%20semi-insulating%20GaAs%20Gunn%20structures&rft.jtitle=Solid-state%20electronics&rft.au=Manifacier,%20J.C.&rft.date=2010-12-01&rft.volume=54&rft.issue=12&rft.spage=1511&rft.epage=1519&rft.pages=1511-1519&rft.issn=0038-1101&rft.eissn=1879-2405&rft_id=info:doi/10.1016/j.sse.2010.07.011&rft_dat=%3Cproquest_cross%3E831208794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831208794&rft_id=info:pmid/&rft_els_id=S0038110110002807&rfr_iscdi=true