Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel
In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules du...
Gespeichert in:
Veröffentlicht in: | International journal of heat and fluid flow 2010-12, Vol.31 (6), p.996-1004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1004 |
---|---|
container_issue | 6 |
container_start_page | 996 |
container_title | International journal of heat and fluid flow |
container_volume | 31 |
creator | Sadlej, K. Wajnryb, E. Ekiel-Jeżewska, M.L. Lamparska, D. Kowalewski, T.A. |
description | In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules due to hydrodynamic stresses from the surrounding fluid motion. Nanofibres used in the experiments are obtained by electrospinning polymer solutions. Their typical dimensions are 100–1000
μm (length) and 0.1–1
μm (diameter). The nanofibre dynamics is followed experimentally under a fluorescence microscope. A precise multipole expansion method of solving the Stokes equations, and its numerical implementation are used to construct a bead-spring model of a filament moving in a Poiseuille flow between two infinite parallel walls. Simulations show typical behaviour of elongated macromolecules. Depending on the parameters, folding and unfolding sequences of a flexible filament are observed, or a rotational and translation motion of a shape-preserving filament. An important result of our experiments is that nanofibres do not significantly change their shape while interacting with a micro-flow. It appeared that their rotational motion is better reproduced by the shape-preserving Stokesian bead model with all pairs of beads connected by springs, omitting explicit bending forces. |
doi_str_mv | 10.1016/j.ijheatfluidflow.2010.02.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831206914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142727X10000548</els_id><sourcerecordid>831206914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-58c468749e90d28b86a428b6ad40540caffcfc5d3b5f8620839892bf3ac3bef13</originalsourceid><addsrcrecordid>eNqNUE1LAzEUDKJgrf6HXMTT1pdkP7IHD-JHFRRBFLyFbPaFpmwTTVpl_70pFQ-ehAdzePNm3gwhpwxmDFh9vpy55QL12g4b19shfM045B3wPGyPTJhs2oLzRu6TCbCSFw1v3g7JUUpLAKihbCbk8Xr0euVMosFSr32wrouYqAn-E0fsaTfSrEyfcfRh6BP1m1WHkW7tqPNU03wcg1lo73E4JgdWDwlPfnBKXm9vXq7uioen-f3V5UNhRFuti0qaspZN2WILPZedrHWZodZ9CVUJRltrrKl60VVW1hykaGXLOyu0ER1aJqbkbKf7HsPHBtNarVwyOAzaY9gkJQXjULeszMyLHTM_mVJEq96jW-k4KgZq26Jaqj8tqm2LCnierdPpj5NORg82am9c-hXhooIcRWTefMfDHPvTYVTJOPQGexfRrFUf3D8dvwFLEpK2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831206914</pqid></control><display><type>article</type><title>Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sadlej, K. ; Wajnryb, E. ; Ekiel-Jeżewska, M.L. ; Lamparska, D. ; Kowalewski, T.A.</creator><creatorcontrib>Sadlej, K. ; Wajnryb, E. ; Ekiel-Jeżewska, M.L. ; Lamparska, D. ; Kowalewski, T.A.</creatorcontrib><description>In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules due to hydrodynamic stresses from the surrounding fluid motion. Nanofibres used in the experiments are obtained by electrospinning polymer solutions. Their typical dimensions are 100–1000
μm (length) and 0.1–1
μm (diameter). The nanofibre dynamics is followed experimentally under a fluorescence microscope. A precise multipole expansion method of solving the Stokes equations, and its numerical implementation are used to construct a bead-spring model of a filament moving in a Poiseuille flow between two infinite parallel walls. Simulations show typical behaviour of elongated macromolecules. Depending on the parameters, folding and unfolding sequences of a flexible filament are observed, or a rotational and translation motion of a shape-preserving filament. An important result of our experiments is that nanofibres do not significantly change their shape while interacting with a micro-flow. It appeared that their rotational motion is better reproduced by the shape-preserving Stokesian bead model with all pairs of beads connected by springs, omitting explicit bending forces.</description><identifier>ISSN: 0142-727X</identifier><identifier>EISSN: 1879-2278</identifier><identifier>DOI: 10.1016/j.ijheatfluidflow.2010.02.021</identifier><identifier>CODEN: IJHFD2</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied sciences ; Beads ; Computational fluid dynamics ; Exact sciences and technology ; Fibers and threads ; Filament dynamics ; Filaments ; Fluid flow ; Forms of application and semi-finished materials ; Mathematical models ; Microchannels ; Multipole expansion ; Nanocomposites ; Nanofibres suspension ; Nanomaterials ; Nanostructure ; Polymer industry, paints, wood ; Stokesian dynamics ; Technology of polymers</subject><ispartof>International journal of heat and fluid flow, 2010-12, Vol.31 (6), p.996-1004</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-58c468749e90d28b86a428b6ad40540caffcfc5d3b5f8620839892bf3ac3bef13</citedby><cites>FETCH-LOGICAL-c395t-58c468749e90d28b86a428b6ad40540caffcfc5d3b5f8620839892bf3ac3bef13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatfluidflow.2010.02.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23504683$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadlej, K.</creatorcontrib><creatorcontrib>Wajnryb, E.</creatorcontrib><creatorcontrib>Ekiel-Jeżewska, M.L.</creatorcontrib><creatorcontrib>Lamparska, D.</creatorcontrib><creatorcontrib>Kowalewski, T.A.</creatorcontrib><title>Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel</title><title>International journal of heat and fluid flow</title><description>In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules due to hydrodynamic stresses from the surrounding fluid motion. Nanofibres used in the experiments are obtained by electrospinning polymer solutions. Their typical dimensions are 100–1000
μm (length) and 0.1–1
μm (diameter). The nanofibre dynamics is followed experimentally under a fluorescence microscope. A precise multipole expansion method of solving the Stokes equations, and its numerical implementation are used to construct a bead-spring model of a filament moving in a Poiseuille flow between two infinite parallel walls. Simulations show typical behaviour of elongated macromolecules. Depending on the parameters, folding and unfolding sequences of a flexible filament are observed, or a rotational and translation motion of a shape-preserving filament. An important result of our experiments is that nanofibres do not significantly change their shape while interacting with a micro-flow. It appeared that their rotational motion is better reproduced by the shape-preserving Stokesian bead model with all pairs of beads connected by springs, omitting explicit bending forces.</description><subject>Applied sciences</subject><subject>Beads</subject><subject>Computational fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Filament dynamics</subject><subject>Filaments</subject><subject>Fluid flow</subject><subject>Forms of application and semi-finished materials</subject><subject>Mathematical models</subject><subject>Microchannels</subject><subject>Multipole expansion</subject><subject>Nanocomposites</subject><subject>Nanofibres suspension</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Stokesian dynamics</subject><subject>Technology of polymers</subject><issn>0142-727X</issn><issn>1879-2278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LAzEUDKJgrf6HXMTT1pdkP7IHD-JHFRRBFLyFbPaFpmwTTVpl_70pFQ-ehAdzePNm3gwhpwxmDFh9vpy55QL12g4b19shfM045B3wPGyPTJhs2oLzRu6TCbCSFw1v3g7JUUpLAKihbCbk8Xr0euVMosFSr32wrouYqAn-E0fsaTfSrEyfcfRh6BP1m1WHkW7tqPNU03wcg1lo73E4JgdWDwlPfnBKXm9vXq7uioen-f3V5UNhRFuti0qaspZN2WILPZedrHWZodZ9CVUJRltrrKl60VVW1hykaGXLOyu0ER1aJqbkbKf7HsPHBtNarVwyOAzaY9gkJQXjULeszMyLHTM_mVJEq96jW-k4KgZq26Jaqj8tqm2LCnierdPpj5NORg82am9c-hXhooIcRWTefMfDHPvTYVTJOPQGexfRrFUf3D8dvwFLEpK2</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Sadlej, K.</creator><creator>Wajnryb, E.</creator><creator>Ekiel-Jeżewska, M.L.</creator><creator>Lamparska, D.</creator><creator>Kowalewski, T.A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel</title><author>Sadlej, K. ; Wajnryb, E. ; Ekiel-Jeżewska, M.L. ; Lamparska, D. ; Kowalewski, T.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-58c468749e90d28b86a428b6ad40540caffcfc5d3b5f8620839892bf3ac3bef13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Beads</topic><topic>Computational fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Filament dynamics</topic><topic>Filaments</topic><topic>Fluid flow</topic><topic>Forms of application and semi-finished materials</topic><topic>Mathematical models</topic><topic>Microchannels</topic><topic>Multipole expansion</topic><topic>Nanocomposites</topic><topic>Nanofibres suspension</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Stokesian dynamics</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadlej, K.</creatorcontrib><creatorcontrib>Wajnryb, E.</creatorcontrib><creatorcontrib>Ekiel-Jeżewska, M.L.</creatorcontrib><creatorcontrib>Lamparska, D.</creatorcontrib><creatorcontrib>Kowalewski, T.A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and fluid flow</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadlej, K.</au><au>Wajnryb, E.</au><au>Ekiel-Jeżewska, M.L.</au><au>Lamparska, D.</au><au>Kowalewski, T.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel</atitle><jtitle>International journal of heat and fluid flow</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>31</volume><issue>6</issue><spage>996</spage><epage>1004</epage><pages>996-1004</pages><issn>0142-727X</issn><eissn>1879-2278</eissn><coden>IJHFD2</coden><abstract>In this paper we aim to create an experimental and numerical model of nano and micro filaments suspended in a confined Poiseuille flow. The experimental data obtained for short nanofibres will help to elucidate fundamental questions concerning mobility and deformation of biological macromolecules due to hydrodynamic stresses from the surrounding fluid motion. Nanofibres used in the experiments are obtained by electrospinning polymer solutions. Their typical dimensions are 100–1000
μm (length) and 0.1–1
μm (diameter). The nanofibre dynamics is followed experimentally under a fluorescence microscope. A precise multipole expansion method of solving the Stokes equations, and its numerical implementation are used to construct a bead-spring model of a filament moving in a Poiseuille flow between two infinite parallel walls. Simulations show typical behaviour of elongated macromolecules. Depending on the parameters, folding and unfolding sequences of a flexible filament are observed, or a rotational and translation motion of a shape-preserving filament. An important result of our experiments is that nanofibres do not significantly change their shape while interacting with a micro-flow. It appeared that their rotational motion is better reproduced by the shape-preserving Stokesian bead model with all pairs of beads connected by springs, omitting explicit bending forces.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.ijheatfluidflow.2010.02.021</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-727X |
ispartof | International journal of heat and fluid flow, 2010-12, Vol.31 (6), p.996-1004 |
issn | 0142-727X 1879-2278 |
language | eng |
recordid | cdi_proquest_miscellaneous_831206914 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Beads Computational fluid dynamics Exact sciences and technology Fibers and threads Filament dynamics Filaments Fluid flow Forms of application and semi-finished materials Mathematical models Microchannels Multipole expansion Nanocomposites Nanofibres suspension Nanomaterials Nanostructure Polymer industry, paints, wood Stokesian dynamics Technology of polymers |
title | Dynamics of nanofibres conveyed by low Reynolds number flow in a microchannel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A27%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20nanofibres%20conveyed%20by%20low%20Reynolds%20number%20flow%20in%20a%20microchannel&rft.jtitle=International%20journal%20of%20heat%20and%20fluid%20flow&rft.au=Sadlej,%20K.&rft.date=2010-12-01&rft.volume=31&rft.issue=6&rft.spage=996&rft.epage=1004&rft.pages=996-1004&rft.issn=0142-727X&rft.eissn=1879-2278&rft.coden=IJHFD2&rft_id=info:doi/10.1016/j.ijheatfluidflow.2010.02.021&rft_dat=%3Cproquest_cross%3E831206914%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831206914&rft_id=info:pmid/&rft_els_id=S0142727X10000548&rfr_iscdi=true |