Convective Performance of Nanofluids in Commercial Electronics Cooling Systems

Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2010-11, Vol.30 (16), p.2499-2504
Hauptverfasser: Roberts, N.A., Walker, D.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2504
container_issue 16
container_start_page 2499
container_title Applied thermal engineering
container_volume 30
creator Roberts, N.A.
Walker, D.G.
description Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20–30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.
doi_str_mv 10.1016/j.applthermaleng.2010.06.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831205348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135943111000270X</els_id><sourcerecordid>831205348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5d6cbbb8c5365d14bfd41e74515cdfc1bc60dd839562a2c858ca0132d1285ccf3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxfegYK1-hz0onrrmz2a7BS9SWhVKFdRzyE4mNSW7qcm20G9vSovgzdPAzHtvZn5ZdkNJQQmt7teF2mxc_4WhVQ67VcFIGpGqIIyfZQPKxWRUckovsssY14RQVo_LQbac-m6H0Nsd5m8YjE_2DjD3Jl-qzhu3tTrmtsunvm0xgFUun7lkCL6zEFPbO9ut8vd97LGNV9m5US7i9akOs8_57GP6PFq8Pr1MHxcj4BPWj4SuoGmaGgSvhKZlY3RJcVwKKkAboA1UROuaT0TFFINa1KAI5UynqwWA4cPs7pi7Cf57i7GXrY2AzqkO_TbKmlNGBC_rpHw4KiH4GAMauQm2VWEvKZEHcnIt_5KTB3KSVDKRS_bb0yIVQTkTEh0bfzMYZxM2pjTp5kcdpq93FoOMYDGR1DYkWlJ7-7-FP9aRkFo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831205348</pqid></control><display><type>article</type><title>Convective Performance of Nanofluids in Commercial Electronics Cooling Systems</title><source>Elsevier ScienceDirect Journals</source><creator>Roberts, N.A. ; Walker, D.G.</creator><creatorcontrib>Roberts, N.A. ; Walker, D.G.</creatorcontrib><description>Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20–30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2010.06.023</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computational fluid dynamics ; Cooling systems ; Electronics ; Electronics cooling ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid flow ; Fluids ; Heat transfer ; Liquid cooling ; Nanocomposites ; Nanofluids ; Nanomaterials ; Nanoparticles ; Nanostructure ; Theoretical studies. Data and constants. Metering</subject><ispartof>Applied thermal engineering, 2010-11, Vol.30 (16), p.2499-2504</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5d6cbbb8c5365d14bfd41e74515cdfc1bc60dd839562a2c858ca0132d1285ccf3</citedby><cites>FETCH-LOGICAL-c392t-5d6cbbb8c5365d14bfd41e74515cdfc1bc60dd839562a2c858ca0132d1285ccf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135943111000270X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23292711$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Roberts, N.A.</creatorcontrib><creatorcontrib>Walker, D.G.</creatorcontrib><title>Convective Performance of Nanofluids in Commercial Electronics Cooling Systems</title><title>Applied thermal engineering</title><description>Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20–30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.</description><subject>Applied sciences</subject><subject>Computational fluid dynamics</subject><subject>Cooling systems</subject><subject>Electronics</subject><subject>Electronics cooling</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Heat transfer</subject><subject>Liquid cooling</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Theoretical studies. Data and constants. Metering</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LAzEQxfegYK1-hz0onrrmz2a7BS9SWhVKFdRzyE4mNSW7qcm20G9vSovgzdPAzHtvZn5ZdkNJQQmt7teF2mxc_4WhVQ67VcFIGpGqIIyfZQPKxWRUckovsssY14RQVo_LQbac-m6H0Nsd5m8YjE_2DjD3Jl-qzhu3tTrmtsunvm0xgFUun7lkCL6zEFPbO9ut8vd97LGNV9m5US7i9akOs8_57GP6PFq8Pr1MHxcj4BPWj4SuoGmaGgSvhKZlY3RJcVwKKkAboA1UROuaT0TFFINa1KAI5UynqwWA4cPs7pi7Cf57i7GXrY2AzqkO_TbKmlNGBC_rpHw4KiH4GAMauQm2VWEvKZEHcnIt_5KTB3KSVDKRS_bb0yIVQTkTEh0bfzMYZxM2pjTp5kcdpq93FoOMYDGR1DYkWlJ7-7-FP9aRkFo</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Roberts, N.A.</creator><creator>Walker, D.G.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20101101</creationdate><title>Convective Performance of Nanofluids in Commercial Electronics Cooling Systems</title><author>Roberts, N.A. ; Walker, D.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5d6cbbb8c5365d14bfd41e74515cdfc1bc60dd839562a2c858ca0132d1285ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computational fluid dynamics</topic><topic>Cooling systems</topic><topic>Electronics</topic><topic>Electronics cooling</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Heat transfer</topic><topic>Liquid cooling</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Theoretical studies. Data and constants. Metering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, N.A.</creatorcontrib><creatorcontrib>Walker, D.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, N.A.</au><au>Walker, D.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convective Performance of Nanofluids in Commercial Electronics Cooling Systems</atitle><jtitle>Applied thermal engineering</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>30</volume><issue>16</issue><spage>2499</spage><epage>2504</epage><pages>2499-2504</pages><issn>1359-4311</issn><abstract>Nanofluids are stable engineered colloidal suspensions of a small fraction of nanoparticles in a base fluid. Nanofluids have shown great promise as heat transfer fluids over typically used base fluids and fluids with micron sized particles. Suspensions with micron sized particles are known to settle rapidly and cause clogging and damage to the surfaces of pumping and flow equipment. These problems are dramatically reduced in nanofluids. In the current work we investigate the performance of different volume loadings of water-based alumina nanofluids in a commercially available electronics cooling system. The commercially available system is a water block used for liquid cooling of a computational processing unit. The size of the nanoparticles in the study is 20–30 nm. Results show an enhancement in convective heat transfer due to the addition of nanoparticles in the commercial cooling system with volume loadings of nanoparticles up to 1.5% by volume. The enhancement in the convective performance observed is similar to what has been reported in well controlled and understood systems and is commensurate with bulk models. The current nanoparticle suspensions showed visible signs of settling which varied from hours to weeks depending on the size of the particles used.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2010.06.023</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-4311
ispartof Applied thermal engineering, 2010-11, Vol.30 (16), p.2499-2504
issn 1359-4311
language eng
recordid cdi_proquest_miscellaneous_831205348
source Elsevier ScienceDirect Journals
subjects Applied sciences
Computational fluid dynamics
Cooling systems
Electronics
Electronics cooling
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid flow
Fluids
Heat transfer
Liquid cooling
Nanocomposites
Nanofluids
Nanomaterials
Nanoparticles
Nanostructure
Theoretical studies. Data and constants. Metering
title Convective Performance of Nanofluids in Commercial Electronics Cooling Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convective%20Performance%20of%20Nanofluids%20in%20Commercial%20Electronics%20Cooling%20Systems&rft.jtitle=Applied%20thermal%20engineering&rft.au=Roberts,%20N.A.&rft.date=2010-11-01&rft.volume=30&rft.issue=16&rft.spage=2499&rft.epage=2504&rft.pages=2499-2504&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2010.06.023&rft_dat=%3Cproquest_cross%3E831205348%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831205348&rft_id=info:pmid/&rft_els_id=S135943111000270X&rfr_iscdi=true