A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media

A mathematical model of the reheating process of steel slabs in industrial fuel-fired furnaces is developed. The transient temperature field inside the slabs is computed by means of the Galerkin method. Radiative heat transfer inside the furnace constitutes boundary conditions that couple the dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2010-12, Vol.53 (25), p.5933-5946
Hauptverfasser: Steinboeck, A., Wild, D., Kiefer, T., Kugi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5946
container_issue 25
container_start_page 5933
container_title International journal of heat and mass transfer
container_volume 53
creator Steinboeck, A.
Wild, D.
Kiefer, T.
Kugi, A.
description A mathematical model of the reheating process of steel slabs in industrial fuel-fired furnaces is developed. The transient temperature field inside the slabs is computed by means of the Galerkin method. Radiative heat transfer inside the furnace constitutes boundary conditions that couple the dynamic subsystems of the slabs. Constraining the heat fluxes to piecewise linear, discontinuous signals furnishes a discrete-time state-space system. Conditions for an exponential decrease of the open-loop control error are derived. Measurements from an instrumented slab in the real system demonstrate the accuracy of the model. The simple and computationally inexpensive model is suitable for trajectory planning, optimization, and controller design.
doi_str_mv 10.1016/j.ijheatmasstransfer.2010.07.029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831201940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931010003996</els_id><sourcerecordid>831201940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-ccbd06c970d2b8f46bf9d7b28ae8eeeef8bfc1ee9522bed8fcd1894fa6f9649a3</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwH3JBcGlx2tI2NxDiU5O4wDlyE4dl6sdIuiH-PakGXLiQQyLHr1_bD2PnAlIBorxYpW61JBw7DGH02AdLPs0gpqFKIZN7bCbqSiaZqOU-mwGIKpG5gEN2FMJqCqEoZ-z9mnc4LileTmPLu8FQywfLkYcWG-5pauL6N243vkdN_MONS-7RuPi9JT6l-c8AHHvD-6FP1uijn1vvSt8w0LAJvKNYdcwOLLaBTr7fOXu9u325eUgWz_ePN9eLRBdQjInWjYFSywpM1tS2KBsrTdVkNVJN8di6sVoQycssa8jUVpu4aWGxtLIsJOZzdrbzXfvhfUNhVJ0LmtoW-2kYVeci4pIFROXVTqn9EIInq9bedeg_lQA1wVYr9Re2mmArqFSEHS1Ov5thiBht1GgXfn2yPIcqh0n3tNNR3HzrokvQjnodwXjSozKD-3_TL_rSpbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831201940</pqid></control><display><type>article</type><title>A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Steinboeck, A. ; Wild, D. ; Kiefer, T. ; Kugi, A.</creator><creatorcontrib>Steinboeck, A. ; Wild, D. ; Kiefer, T. ; Kugi, A.</creatorcontrib><description>A mathematical model of the reheating process of steel slabs in industrial fuel-fired furnaces is developed. The transient temperature field inside the slabs is computed by means of the Galerkin method. Radiative heat transfer inside the furnace constitutes boundary conditions that couple the dynamic subsystems of the slabs. Constraining the heat fluxes to piecewise linear, discontinuous signals furnishes a discrete-time state-space system. Conditions for an exponential decrease of the open-loop control error are derived. Measurements from an instrumented slab in the real system demonstrate the accuracy of the model. The simple and computationally inexpensive model is suitable for trajectory planning, optimization, and controller design.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2010.07.029</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Galerkin method ; Iron and steel making ; Metals. Metallurgy ; Open-loop control ; Production of metals ; Radiative heat exchange ; Reheating furnace ; Remelting of steel ; Steel slab reheating ; Transient heat conduction</subject><ispartof>International journal of heat and mass transfer, 2010-12, Vol.53 (25), p.5933-5946</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-ccbd06c970d2b8f46bf9d7b28ae8eeeef8bfc1ee9522bed8fcd1894fa6f9649a3</citedby><cites>FETCH-LOGICAL-c404t-ccbd06c970d2b8f46bf9d7b28ae8eeeef8bfc1ee9522bed8fcd1894fa6f9649a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.07.029$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23307309$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinboeck, A.</creatorcontrib><creatorcontrib>Wild, D.</creatorcontrib><creatorcontrib>Kiefer, T.</creatorcontrib><creatorcontrib>Kugi, A.</creatorcontrib><title>A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media</title><title>International journal of heat and mass transfer</title><description>A mathematical model of the reheating process of steel slabs in industrial fuel-fired furnaces is developed. The transient temperature field inside the slabs is computed by means of the Galerkin method. Radiative heat transfer inside the furnace constitutes boundary conditions that couple the dynamic subsystems of the slabs. Constraining the heat fluxes to piecewise linear, discontinuous signals furnishes a discrete-time state-space system. Conditions for an exponential decrease of the open-loop control error are derived. Measurements from an instrumented slab in the real system demonstrate the accuracy of the model. The simple and computationally inexpensive model is suitable for trajectory planning, optimization, and controller design.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Galerkin method</subject><subject>Iron and steel making</subject><subject>Metals. Metallurgy</subject><subject>Open-loop control</subject><subject>Production of metals</subject><subject>Radiative heat exchange</subject><subject>Reheating furnace</subject><subject>Remelting of steel</subject><subject>Steel slab reheating</subject><subject>Transient heat conduction</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwH3JBcGlx2tI2NxDiU5O4wDlyE4dl6sdIuiH-PakGXLiQQyLHr1_bD2PnAlIBorxYpW61JBw7DGH02AdLPs0gpqFKIZN7bCbqSiaZqOU-mwGIKpG5gEN2FMJqCqEoZ-z9mnc4LileTmPLu8FQywfLkYcWG-5pauL6N243vkdN_MONS-7RuPi9JT6l-c8AHHvD-6FP1uijn1vvSt8w0LAJvKNYdcwOLLaBTr7fOXu9u325eUgWz_ePN9eLRBdQjInWjYFSywpM1tS2KBsrTdVkNVJN8di6sVoQycssa8jUVpu4aWGxtLIsJOZzdrbzXfvhfUNhVJ0LmtoW-2kYVeci4pIFROXVTqn9EIInq9bedeg_lQA1wVYr9Re2mmArqFSEHS1Ov5thiBht1GgXfn2yPIcqh0n3tNNR3HzrokvQjnodwXjSozKD-3_TL_rSpbw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Steinboeck, A.</creator><creator>Wild, D.</creator><creator>Kiefer, T.</creator><creator>Kugi, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20101201</creationdate><title>A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media</title><author>Steinboeck, A. ; Wild, D. ; Kiefer, T. ; Kugi, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-ccbd06c970d2b8f46bf9d7b28ae8eeeef8bfc1ee9522bed8fcd1894fa6f9649a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Galerkin method</topic><topic>Iron and steel making</topic><topic>Metals. Metallurgy</topic><topic>Open-loop control</topic><topic>Production of metals</topic><topic>Radiative heat exchange</topic><topic>Reheating furnace</topic><topic>Remelting of steel</topic><topic>Steel slab reheating</topic><topic>Transient heat conduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinboeck, A.</creatorcontrib><creatorcontrib>Wild, D.</creatorcontrib><creatorcontrib>Kiefer, T.</creatorcontrib><creatorcontrib>Kugi, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinboeck, A.</au><au>Wild, D.</au><au>Kiefer, T.</au><au>Kugi, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>53</volume><issue>25</issue><spage>5933</spage><epage>5946</epage><pages>5933-5946</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>A mathematical model of the reheating process of steel slabs in industrial fuel-fired furnaces is developed. The transient temperature field inside the slabs is computed by means of the Galerkin method. Radiative heat transfer inside the furnace constitutes boundary conditions that couple the dynamic subsystems of the slabs. Constraining the heat fluxes to piecewise linear, discontinuous signals furnishes a discrete-time state-space system. Conditions for an exponential decrease of the open-loop control error are derived. Measurements from an instrumented slab in the real system demonstrate the accuracy of the model. The simple and computationally inexpensive model is suitable for trajectory planning, optimization, and controller design.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2010.07.029</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2010-12, Vol.53 (25), p.5933-5946
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_831201940
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Exact sciences and technology
Galerkin method
Iron and steel making
Metals. Metallurgy
Open-loop control
Production of metals
Radiative heat exchange
Reheating furnace
Remelting of steel
Steel slab reheating
Transient heat conduction
title A mathematical model of a slab reheating furnace with radiative heat transfer and non-participating gaseous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20of%20a%20slab%20reheating%20furnace%20with%20radiative%20heat%20transfer%20and%20non-participating%20gaseous%20media&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Steinboeck,%20A.&rft.date=2010-12-01&rft.volume=53&rft.issue=25&rft.spage=5933&rft.epage=5946&rft.pages=5933-5946&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2010.07.029&rft_dat=%3Cproquest_cross%3E831201940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831201940&rft_id=info:pmid/&rft_els_id=S0017931010003996&rfr_iscdi=true