Real time optimization (RTO) with model predictive control (MPC)
This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of t...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2010-12, Vol.34 (12), p.1999-2006 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2006 |
---|---|
container_issue | 12 |
container_start_page | 1999 |
container_title | Computers & chemical engineering |
container_volume | 34 |
creator | De Souza, Glauce Odloak, Darci Zanin, Antônio C. |
description | This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. |
doi_str_mv | 10.1016/j.compchemeng.2010.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831193810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135410002498</els_id><sourcerecordid>831193810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</originalsourceid><addsrcrecordid>eNqNkE9Lw0AUxBdRsFa_QzzZHlLfZjfd7U0p_gOlUup5SV5e7JYkG3fTin56U-rBo6eBYWZgfoxdcphw4NPrzQRd3eKaamreJwn0PqgJAD9iA66ViKVQ6TEbAMx0zEUqT9lZCBsASKTWA3azpKyKOltT5Npe7HfWWddEo-VqMY4-bbeOaldQFbWeCoud3VGErum8q6LRy-t8fM5OyqwKdPGrQ_Z2f7eaP8bPi4en-e1zjCIVXZziNCtzQq2SPFdC5UVagpAkcigyOQWUUkmBoKXSOlGY56kokjLjQueIlIghuzrstt59bCl0prYBqaqyhtw2GC04nwnNoU_ODkn0LgRPpWm9rTP_ZTiYPTSzMX-gmT00A8r00Pru_NCl_srOkjcBLTXYf_eEnSmc_cfKD5h7eso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831193810</pqid></control><display><type>article</type><title>Real time optimization (RTO) with model predictive control (MPC)</title><source>Elsevier ScienceDirect Journals</source><creator>De Souza, Glauce ; Odloak, Darci ; Zanin, Antônio C.</creator><creatorcontrib>De Souza, Glauce ; Odloak, Darci ; Zanin, Antônio C.</creatorcontrib><description>This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2010.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Cost function ; Economics ; Fluid catalytic converter ; Integration of control and optimization ; Mathematical models ; Model predictive control ; Nonlinearity ; Optimization ; Real time ; Real time optimization ; Strategy</subject><ispartof>Computers & chemical engineering, 2010-12, Vol.34 (12), p.1999-2006</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</citedby><cites>FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2010.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>De Souza, Glauce</creatorcontrib><creatorcontrib>Odloak, Darci</creatorcontrib><creatorcontrib>Zanin, Antônio C.</creatorcontrib><title>Real time optimization (RTO) with model predictive control (MPC)</title><title>Computers & chemical engineering</title><description>This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.</description><subject>Computer simulation</subject><subject>Cost function</subject><subject>Economics</subject><subject>Fluid catalytic converter</subject><subject>Integration of control and optimization</subject><subject>Mathematical models</subject><subject>Model predictive control</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real time optimization</subject><subject>Strategy</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AUxBdRsFa_QzzZHlLfZjfd7U0p_gOlUup5SV5e7JYkG3fTin56U-rBo6eBYWZgfoxdcphw4NPrzQRd3eKaamreJwn0PqgJAD9iA66ViKVQ6TEbAMx0zEUqT9lZCBsASKTWA3azpKyKOltT5Npe7HfWWddEo-VqMY4-bbeOaldQFbWeCoud3VGErum8q6LRy-t8fM5OyqwKdPGrQ_Z2f7eaP8bPi4en-e1zjCIVXZziNCtzQq2SPFdC5UVagpAkcigyOQWUUkmBoKXSOlGY56kokjLjQueIlIghuzrstt59bCl0prYBqaqyhtw2GC04nwnNoU_ODkn0LgRPpWm9rTP_ZTiYPTSzMX-gmT00A8r00Pru_NCl_srOkjcBLTXYf_eEnSmc_cfKD5h7eso</recordid><startdate>20101209</startdate><enddate>20101209</enddate><creator>De Souza, Glauce</creator><creator>Odloak, Darci</creator><creator>Zanin, Antônio C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101209</creationdate><title>Real time optimization (RTO) with model predictive control (MPC)</title><author>De Souza, Glauce ; Odloak, Darci ; Zanin, Antônio C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Cost function</topic><topic>Economics</topic><topic>Fluid catalytic converter</topic><topic>Integration of control and optimization</topic><topic>Mathematical models</topic><topic>Model predictive control</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real time optimization</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Souza, Glauce</creatorcontrib><creatorcontrib>Odloak, Darci</creatorcontrib><creatorcontrib>Zanin, Antônio C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Souza, Glauce</au><au>Odloak, Darci</au><au>Zanin, Antônio C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real time optimization (RTO) with model predictive control (MPC)</atitle><jtitle>Computers & chemical engineering</jtitle><date>2010-12-09</date><risdate>2010</risdate><volume>34</volume><issue>12</issue><spage>1999</spage><epage>2006</epage><pages>1999-2006</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2010.07.001</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-1354 |
ispartof | Computers & chemical engineering, 2010-12, Vol.34 (12), p.1999-2006 |
issn | 0098-1354 1873-4375 |
language | eng |
recordid | cdi_proquest_miscellaneous_831193810 |
source | Elsevier ScienceDirect Journals |
subjects | Computer simulation Cost function Economics Fluid catalytic converter Integration of control and optimization Mathematical models Model predictive control Nonlinearity Optimization Real time Real time optimization Strategy |
title | Real time optimization (RTO) with model predictive control (MPC) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20time%20optimization%20(RTO)%20with%20model%20predictive%20control%20(MPC)&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=De%20Souza,%20Glauce&rft.date=2010-12-09&rft.volume=34&rft.issue=12&rft.spage=1999&rft.epage=2006&rft.pages=1999-2006&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2010.07.001&rft_dat=%3Cproquest_cross%3E831193810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831193810&rft_id=info:pmid/&rft_els_id=S0098135410002498&rfr_iscdi=true |