Real time optimization (RTO) with model predictive control (MPC)

This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2010-12, Vol.34 (12), p.1999-2006
Hauptverfasser: De Souza, Glauce, Odloak, Darci, Zanin, Antônio C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2006
container_issue 12
container_start_page 1999
container_title Computers & chemical engineering
container_volume 34
creator De Souza, Glauce
Odloak, Darci
Zanin, Antônio C.
description This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.
doi_str_mv 10.1016/j.compchemeng.2010.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831193810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135410002498</els_id><sourcerecordid>831193810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</originalsourceid><addsrcrecordid>eNqNkE9Lw0AUxBdRsFa_QzzZHlLfZjfd7U0p_gOlUup5SV5e7JYkG3fTin56U-rBo6eBYWZgfoxdcphw4NPrzQRd3eKaamreJwn0PqgJAD9iA66ViKVQ6TEbAMx0zEUqT9lZCBsASKTWA3azpKyKOltT5Npe7HfWWddEo-VqMY4-bbeOaldQFbWeCoud3VGErum8q6LRy-t8fM5OyqwKdPGrQ_Z2f7eaP8bPi4en-e1zjCIVXZziNCtzQq2SPFdC5UVagpAkcigyOQWUUkmBoKXSOlGY56kokjLjQueIlIghuzrstt59bCl0prYBqaqyhtw2GC04nwnNoU_ODkn0LgRPpWm9rTP_ZTiYPTSzMX-gmT00A8r00Pru_NCl_srOkjcBLTXYf_eEnSmc_cfKD5h7eso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831193810</pqid></control><display><type>article</type><title>Real time optimization (RTO) with model predictive control (MPC)</title><source>Elsevier ScienceDirect Journals</source><creator>De Souza, Glauce ; Odloak, Darci ; Zanin, Antônio C.</creator><creatorcontrib>De Souza, Glauce ; Odloak, Darci ; Zanin, Antônio C.</creatorcontrib><description>This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2010.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Cost function ; Economics ; Fluid catalytic converter ; Integration of control and optimization ; Mathematical models ; Model predictive control ; Nonlinearity ; Optimization ; Real time ; Real time optimization ; Strategy</subject><ispartof>Computers &amp; chemical engineering, 2010-12, Vol.34 (12), p.1999-2006</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</citedby><cites>FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2010.07.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>De Souza, Glauce</creatorcontrib><creatorcontrib>Odloak, Darci</creatorcontrib><creatorcontrib>Zanin, Antônio C.</creatorcontrib><title>Real time optimization (RTO) with model predictive control (MPC)</title><title>Computers &amp; chemical engineering</title><description>This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.</description><subject>Computer simulation</subject><subject>Cost function</subject><subject>Economics</subject><subject>Fluid catalytic converter</subject><subject>Integration of control and optimization</subject><subject>Mathematical models</subject><subject>Model predictive control</subject><subject>Nonlinearity</subject><subject>Optimization</subject><subject>Real time</subject><subject>Real time optimization</subject><subject>Strategy</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AUxBdRsFa_QzzZHlLfZjfd7U0p_gOlUup5SV5e7JYkG3fTin56U-rBo6eBYWZgfoxdcphw4NPrzQRd3eKaamreJwn0PqgJAD9iA66ViKVQ6TEbAMx0zEUqT9lZCBsASKTWA3azpKyKOltT5Npe7HfWWddEo-VqMY4-bbeOaldQFbWeCoud3VGErum8q6LRy-t8fM5OyqwKdPGrQ_Z2f7eaP8bPi4en-e1zjCIVXZziNCtzQq2SPFdC5UVagpAkcigyOQWUUkmBoKXSOlGY56kokjLjQueIlIghuzrstt59bCl0prYBqaqyhtw2GC04nwnNoU_ODkn0LgRPpWm9rTP_ZTiYPTSzMX-gmT00A8r00Pru_NCl_srOkjcBLTXYf_eEnSmc_cfKD5h7eso</recordid><startdate>20101209</startdate><enddate>20101209</enddate><creator>De Souza, Glauce</creator><creator>Odloak, Darci</creator><creator>Zanin, Antônio C.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101209</creationdate><title>Real time optimization (RTO) with model predictive control (MPC)</title><author>De Souza, Glauce ; Odloak, Darci ; Zanin, Antônio C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-5c6afbec872bb737bd5f034e3b0da460c44743c08478827cbb53d2fa138bcce23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer simulation</topic><topic>Cost function</topic><topic>Economics</topic><topic>Fluid catalytic converter</topic><topic>Integration of control and optimization</topic><topic>Mathematical models</topic><topic>Model predictive control</topic><topic>Nonlinearity</topic><topic>Optimization</topic><topic>Real time</topic><topic>Real time optimization</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Souza, Glauce</creatorcontrib><creatorcontrib>Odloak, Darci</creatorcontrib><creatorcontrib>Zanin, Antônio C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Souza, Glauce</au><au>Odloak, Darci</au><au>Zanin, Antônio C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real time optimization (RTO) with model predictive control (MPC)</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2010-12-09</date><risdate>2010</risdate><volume>34</volume><issue>12</issue><spage>1999</spage><epage>2006</epage><pages>1999-2006</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2010.07.001</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2010-12, Vol.34 (12), p.1999-2006
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_831193810
source Elsevier ScienceDirect Journals
subjects Computer simulation
Cost function
Economics
Fluid catalytic converter
Integration of control and optimization
Mathematical models
Model predictive control
Nonlinearity
Optimization
Real time
Real time optimization
Strategy
title Real time optimization (RTO) with model predictive control (MPC)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20time%20optimization%20(RTO)%20with%20model%20predictive%20control%20(MPC)&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=De%20Souza,%20Glauce&rft.date=2010-12-09&rft.volume=34&rft.issue=12&rft.spage=1999&rft.epage=2006&rft.pages=1999-2006&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2010.07.001&rft_dat=%3Cproquest_cross%3E831193810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831193810&rft_id=info:pmid/&rft_els_id=S0098135410002498&rfr_iscdi=true