Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order

The construction of high order symmetric, symplectic and exponentially fitted Runge–Kutta (RK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is analyzed. Based on the symplecticness, symmetry, and exponential fitting properties, three new four-stage RK integ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2010-12, Vol.181 (12), p.2044-2056
Hauptverfasser: Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2056
container_issue 12
container_start_page 2044
container_title Computer physics communications
container_volume 181
creator Calvo, M.
Franco, J.M.
Montijano, J.I.
Rández, L.
description The construction of high order symmetric, symplectic and exponentially fitted Runge–Kutta (RK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is analyzed. Based on the symplecticness, symmetry, and exponential fitting properties, three new four-stage RK integrators, either with fixed- or variable-nodes, are constructed. The algebraic order of the new integrators is also studied, showing that they possess eighth-order of accuracy as the classical four-stage RK Gauss method. Numerical experiments with some oscillatory test problems are presented to show that the new methods are more efficient than other symplectic four-stage eighth-order RK Gauss codes proposed in the scientific literature.
doi_str_mv 10.1016/j.cpc.2010.08.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831193596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465510003103</els_id><sourcerecordid>1770331049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-b73e9fcb249e44f44e56a2bc820de5b4703f02153d3cf53dec3cd52c6116b0433</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAey8g02CHTsPixWqeIlKiNfaSuxJ6yovbAeRHf_AH_IlGJV1NzO6mntnNAehU0piSmh2sYnVoOKEBE2KmFCxh2a0yEWUCM730YyEScSzND1ER85tCCF5LtgMPb1MbQveGoXLTmM3tUMDygcJn0PfQedN2TQTro33oPHz2K3g5-v7YfS-xCG47rXDfY3XZrXGvdVgj9FBXTYOTv77HL3dXL8u7qLl4-394moZKZ4UPqpyBqJWVcIFcF5zDmlWJpUqEqIhrXhOWE0SmjLNVB0qKKZ0mqiM0qwinLE5OtvuHWz_PoLzsjVOQdOUHfSjkwWjVLBUZMF5vtNJ83CMUcJFsNKtVdneOQu1HKxpSztJSuQfaLmRAbT8Ay1JIQPokLncZiB8-2HASqcMdAq0sQGl1L3Zkf4FhUKHXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770331049</pqid></control><display><type>article</type><title>Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order</title><source>Elsevier ScienceDirect Journals</source><creator>Calvo, M. ; Franco, J.M. ; Montijano, J.I. ; Rández, L.</creator><creatorcontrib>Calvo, M. ; Franco, J.M. ; Montijano, J.I. ; Rández, L.</creatorcontrib><description>The construction of high order symmetric, symplectic and exponentially fitted Runge–Kutta (RK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is analyzed. Based on the symplecticness, symmetry, and exponential fitting properties, three new four-stage RK integrators, either with fixed- or variable-nodes, are constructed. The algebraic order of the new integrators is also studied, showing that they possess eighth-order of accuracy as the classical four-stage RK Gauss method. Numerical experiments with some oscillatory test problems are presented to show that the new methods are more efficient than other symplectic four-stage eighth-order RK Gauss codes proposed in the scientific literature.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2010.08.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algebra ; Computer simulation ; Construction ; Exponential fitting ; Fittings ; Integrators ; Mathematical models ; Oscillatory Hamiltonian systems ; Runge-Kutta method ; Runge–Kutta methods ; Symmetry ; Symplecticness</subject><ispartof>Computer physics communications, 2010-12, Vol.181 (12), p.2044-2056</ispartof><rights>2010 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-b73e9fcb249e44f44e56a2bc820de5b4703f02153d3cf53dec3cd52c6116b0433</citedby><cites>FETCH-LOGICAL-c428t-b73e9fcb249e44f44e56a2bc820de5b4703f02153d3cf53dec3cd52c6116b0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010465510003103$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Calvo, M.</creatorcontrib><creatorcontrib>Franco, J.M.</creatorcontrib><creatorcontrib>Montijano, J.I.</creatorcontrib><creatorcontrib>Rández, L.</creatorcontrib><title>Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order</title><title>Computer physics communications</title><description>The construction of high order symmetric, symplectic and exponentially fitted Runge–Kutta (RK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is analyzed. Based on the symplecticness, symmetry, and exponential fitting properties, three new four-stage RK integrators, either with fixed- or variable-nodes, are constructed. The algebraic order of the new integrators is also studied, showing that they possess eighth-order of accuracy as the classical four-stage RK Gauss method. Numerical experiments with some oscillatory test problems are presented to show that the new methods are more efficient than other symplectic four-stage eighth-order RK Gauss codes proposed in the scientific literature.</description><subject>Algebra</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Exponential fitting</subject><subject>Fittings</subject><subject>Integrators</subject><subject>Mathematical models</subject><subject>Oscillatory Hamiltonian systems</subject><subject>Runge-Kutta method</subject><subject>Runge–Kutta methods</subject><subject>Symmetry</subject><subject>Symplecticness</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAey8g02CHTsPixWqeIlKiNfaSuxJ6yovbAeRHf_AH_IlGJV1NzO6mntnNAehU0piSmh2sYnVoOKEBE2KmFCxh2a0yEWUCM730YyEScSzND1ER85tCCF5LtgMPb1MbQveGoXLTmM3tUMDygcJn0PfQedN2TQTro33oPHz2K3g5-v7YfS-xCG47rXDfY3XZrXGvdVgj9FBXTYOTv77HL3dXL8u7qLl4-394moZKZ4UPqpyBqJWVcIFcF5zDmlWJpUqEqIhrXhOWE0SmjLNVB0qKKZ0mqiM0qwinLE5OtvuHWz_PoLzsjVOQdOUHfSjkwWjVLBUZMF5vtNJ83CMUcJFsNKtVdneOQu1HKxpSztJSuQfaLmRAbT8Ay1JIQPokLncZiB8-2HASqcMdAq0sQGl1L3Zkf4FhUKHXg</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Calvo, M.</creator><creator>Franco, J.M.</creator><creator>Montijano, J.I.</creator><creator>Rández, L.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20101201</creationdate><title>Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order</title><author>Calvo, M. ; Franco, J.M. ; Montijano, J.I. ; Rández, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-b73e9fcb249e44f44e56a2bc820de5b4703f02153d3cf53dec3cd52c6116b0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Exponential fitting</topic><topic>Fittings</topic><topic>Integrators</topic><topic>Mathematical models</topic><topic>Oscillatory Hamiltonian systems</topic><topic>Runge-Kutta method</topic><topic>Runge–Kutta methods</topic><topic>Symmetry</topic><topic>Symplecticness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvo, M.</creatorcontrib><creatorcontrib>Franco, J.M.</creatorcontrib><creatorcontrib>Montijano, J.I.</creatorcontrib><creatorcontrib>Rández, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvo, M.</au><au>Franco, J.M.</au><au>Montijano, J.I.</au><au>Rández, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order</atitle><jtitle>Computer physics communications</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>181</volume><issue>12</issue><spage>2044</spage><epage>2056</epage><pages>2044-2056</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>The construction of high order symmetric, symplectic and exponentially fitted Runge–Kutta (RK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is analyzed. Based on the symplecticness, symmetry, and exponential fitting properties, three new four-stage RK integrators, either with fixed- or variable-nodes, are constructed. The algebraic order of the new integrators is also studied, showing that they possess eighth-order of accuracy as the classical four-stage RK Gauss method. Numerical experiments with some oscillatory test problems are presented to show that the new methods are more efficient than other symplectic four-stage eighth-order RK Gauss codes proposed in the scientific literature.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2010.08.019</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2010-12, Vol.181 (12), p.2044-2056
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_831193596
source Elsevier ScienceDirect Journals
subjects Algebra
Computer simulation
Construction
Exponential fitting
Fittings
Integrators
Mathematical models
Oscillatory Hamiltonian systems
Runge-Kutta method
Runge–Kutta methods
Symmetry
Symplecticness
title Symmetric and symplectic exponentially fitted Runge–Kutta methods of high order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetric%20and%20symplectic%20exponentially%20fitted%20Runge%E2%80%93Kutta%20methods%20of%20high%20order&rft.jtitle=Computer%20physics%20communications&rft.au=Calvo,%20M.&rft.date=2010-12-01&rft.volume=181&rft.issue=12&rft.spage=2044&rft.epage=2056&rft.pages=2044-2056&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2010.08.019&rft_dat=%3Cproquest_cross%3E1770331049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770331049&rft_id=info:pmid/&rft_els_id=S0010465510003103&rfr_iscdi=true