Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding
a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-11, Vol.528 (1), p.338-341 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | 1 |
container_start_page | 338 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 528 |
creator | WANG, H. S CHEN, H. G JANG, J. S. C CHIOU, M. S |
description | a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased. |
doi_str_mv | 10.1016/j.msea.2010.09.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831190724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>831190724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt_wFU2oi5mfEnmK-5K0SqUulAXugmZJFNSM5N2MqP4701RXD243HN5HITOCaQESHGzSdtgZEohBsBTINkBmpCqZEnGWXGIJsApSXLg7BidhLABiBXIJ6ib-7a2nRys77BvsMQrffs2W2Ang-mx7HSMnN2NVmPlvbPdGmvzaZXBg8dX733O5iODleUzV10_W0hzXI_uA7dmkM5ZhddxKeAv43RkT9FRI10wZ393il7v717mD8nyafE4ny0TRTkMCde0ME1NTKlzkFxVRcMNyLrQPNe5YfH7ikJVlpSXGlSmMkmKuqJ10ZRNxks2RZe_u9ve70YTBtHaoIxzsjN-DKJihHAoaRab9Lepeh9Cbxqx7W0r-29BQOzdio3YuxV7twK4iOIidPE3L4OSrullp2z4JynLIGMFYT9a9HjH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831190724</pqid></control><display><type>article</type><title>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>WANG, H. S ; CHEN, H. G ; JANG, J. S. C ; CHIOU, M. S</creator><creatorcontrib>WANG, H. S ; CHEN, H. G ; JANG, J. S. C ; CHIOU, M. S</creatorcontrib><description>a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.09.014</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Applied sciences ; Crystallization ; Devices ; Exact sciences and technology ; Heat affected zone ; Joining, thermal cutting: metallurgical aspects ; Laser beam welding ; Liquid cooling ; Liquid crystal displays ; Metals. Metallurgy ; Welding ; Zirconium</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-11, Vol.528 (1), p.338-341</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</citedby><cites>FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23404361$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WANG, H. S</creatorcontrib><creatorcontrib>CHEN, H. G</creatorcontrib><creatorcontrib>JANG, J. S. C</creatorcontrib><creatorcontrib>CHIOU, M. S</creatorcontrib><title>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.</description><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Heat affected zone</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Laser beam welding</subject><subject>Liquid cooling</subject><subject>Liquid crystal displays</subject><subject>Metals. Metallurgy</subject><subject>Welding</subject><subject>Zirconium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKt_wFU2oi5mfEnmK-5K0SqUulAXugmZJFNSM5N2MqP4701RXD243HN5HITOCaQESHGzSdtgZEohBsBTINkBmpCqZEnGWXGIJsApSXLg7BidhLABiBXIJ6ib-7a2nRys77BvsMQrffs2W2Ang-mx7HSMnN2NVmPlvbPdGmvzaZXBg8dX733O5iODleUzV10_W0hzXI_uA7dmkM5ZhddxKeAv43RkT9FRI10wZ393il7v717mD8nyafE4ny0TRTkMCde0ME1NTKlzkFxVRcMNyLrQPNe5YfH7ikJVlpSXGlSmMkmKuqJ10ZRNxks2RZe_u9ve70YTBtHaoIxzsjN-DKJihHAoaRab9Lepeh9Cbxqx7W0r-29BQOzdio3YuxV7twK4iOIidPE3L4OSrullp2z4JynLIGMFYT9a9HjH</recordid><startdate>20101125</startdate><enddate>20101125</enddate><creator>WANG, H. S</creator><creator>CHEN, H. G</creator><creator>JANG, J. S. C</creator><creator>CHIOU, M. S</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101125</creationdate><title>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</title><author>WANG, H. S ; CHEN, H. G ; JANG, J. S. C ; CHIOU, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Heat affected zone</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Laser beam welding</topic><topic>Liquid cooling</topic><topic>Liquid crystal displays</topic><topic>Metals. Metallurgy</topic><topic>Welding</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, H. S</creatorcontrib><creatorcontrib>CHEN, H. G</creatorcontrib><creatorcontrib>JANG, J. S. C</creatorcontrib><creatorcontrib>CHIOU, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, H. S</au><au>CHEN, H. G</au><au>JANG, J. S. C</au><au>CHIOU, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2010-11-25</date><risdate>2010</risdate><volume>528</volume><issue>1</issue><spage>338</spage><epage>341</epage><pages>338-341</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.msea.2010.09.014</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-11, Vol.528 (1), p.338-341 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_831190724 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Crystallization Devices Exact sciences and technology Heat affected zone Joining, thermal cutting: metallurgical aspects Laser beam welding Liquid cooling Liquid crystal displays Metals. Metallurgy Welding Zirconium |
title | Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20a%20Nd:YAG%20laser%20and%20a%20liquid%20cooling%20device%20to%20(Zr53Cu30Ni9Al8)Si0.5%20bulk%20metallic%20glass%20welding&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=WANG,%20H.%20S&rft.date=2010-11-25&rft.volume=528&rft.issue=1&rft.spage=338&rft.epage=341&rft.pages=338-341&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.09.014&rft_dat=%3Cproquest_cross%3E831190724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831190724&rft_id=info:pmid/&rfr_iscdi=true |