Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding

a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2010-11, Vol.528 (1), p.338-341
Hauptverfasser: WANG, H. S, CHEN, H. G, JANG, J. S. C, CHIOU, M. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 341
container_issue 1
container_start_page 338
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 528
creator WANG, H. S
CHEN, H. G
JANG, J. S. C
CHIOU, M. S
description a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.
doi_str_mv 10.1016/j.msea.2010.09.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831190724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>831190724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt_wFU2oi5mfEnmK-5K0SqUulAXugmZJFNSM5N2MqP4701RXD243HN5HITOCaQESHGzSdtgZEohBsBTINkBmpCqZEnGWXGIJsApSXLg7BidhLABiBXIJ6ib-7a2nRys77BvsMQrffs2W2Ang-mx7HSMnN2NVmPlvbPdGmvzaZXBg8dX733O5iODleUzV10_W0hzXI_uA7dmkM5ZhddxKeAv43RkT9FRI10wZ393il7v717mD8nyafE4ny0TRTkMCde0ME1NTKlzkFxVRcMNyLrQPNe5YfH7ikJVlpSXGlSmMkmKuqJ10ZRNxks2RZe_u9ve70YTBtHaoIxzsjN-DKJihHAoaRab9Lepeh9Cbxqx7W0r-29BQOzdio3YuxV7twK4iOIidPE3L4OSrullp2z4JynLIGMFYT9a9HjH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831190724</pqid></control><display><type>article</type><title>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>WANG, H. S ; CHEN, H. G ; JANG, J. S. C ; CHIOU, M. S</creator><creatorcontrib>WANG, H. S ; CHEN, H. G ; JANG, J. S. C ; CHIOU, M. S</creatorcontrib><description>a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2010.09.014</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Applied sciences ; Crystallization ; Devices ; Exact sciences and technology ; Heat affected zone ; Joining, thermal cutting: metallurgical aspects ; Laser beam welding ; Liquid cooling ; Liquid crystal displays ; Metals. Metallurgy ; Welding ; Zirconium</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2010-11, Vol.528 (1), p.338-341</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</citedby><cites>FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23404361$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>WANG, H. S</creatorcontrib><creatorcontrib>CHEN, H. G</creatorcontrib><creatorcontrib>JANG, J. S. C</creatorcontrib><creatorcontrib>CHIOU, M. S</creatorcontrib><title>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.</description><subject>Applied sciences</subject><subject>Crystallization</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Heat affected zone</subject><subject>Joining, thermal cutting: metallurgical aspects</subject><subject>Laser beam welding</subject><subject>Liquid cooling</subject><subject>Liquid crystal displays</subject><subject>Metals. Metallurgy</subject><subject>Welding</subject><subject>Zirconium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKt_wFU2oi5mfEnmK-5K0SqUulAXugmZJFNSM5N2MqP4701RXD243HN5HITOCaQESHGzSdtgZEohBsBTINkBmpCqZEnGWXGIJsApSXLg7BidhLABiBXIJ6ib-7a2nRys77BvsMQrffs2W2Ang-mx7HSMnN2NVmPlvbPdGmvzaZXBg8dX733O5iODleUzV10_W0hzXI_uA7dmkM5ZhddxKeAv43RkT9FRI10wZ393il7v717mD8nyafE4ny0TRTkMCde0ME1NTKlzkFxVRcMNyLrQPNe5YfH7ikJVlpSXGlSmMkmKuqJ10ZRNxks2RZe_u9ve70YTBtHaoIxzsjN-DKJihHAoaRab9Lepeh9Cbxqx7W0r-29BQOzdio3YuxV7twK4iOIidPE3L4OSrullp2z4JynLIGMFYT9a9HjH</recordid><startdate>20101125</startdate><enddate>20101125</enddate><creator>WANG, H. S</creator><creator>CHEN, H. G</creator><creator>JANG, J. S. C</creator><creator>CHIOU, M. S</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20101125</creationdate><title>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</title><author>WANG, H. S ; CHEN, H. G ; JANG, J. S. C ; CHIOU, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-9d26efb1e7d50a9c86f9e0ab6d95d5e3001820877297d0c4c4a16b82b6f7f4973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Crystallization</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Heat affected zone</topic><topic>Joining, thermal cutting: metallurgical aspects</topic><topic>Laser beam welding</topic><topic>Liquid cooling</topic><topic>Liquid crystal displays</topic><topic>Metals. Metallurgy</topic><topic>Welding</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WANG, H. S</creatorcontrib><creatorcontrib>CHEN, H. G</creatorcontrib><creatorcontrib>JANG, J. S. C</creatorcontrib><creatorcontrib>CHIOU, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WANG, H. S</au><au>CHEN, H. G</au><au>JANG, J. S. C</au><au>CHIOU, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2010-11-25</date><risdate>2010</risdate><volume>528</volume><issue>1</issue><spage>338</spage><epage>341</epage><pages>338-341</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>a- A liquid cooling device (LCD) helps to produce a lower initial welding temperature. a- A lower initial welding temperature leads to a faster welding thermal cycle (WTC). a- A faster WTC produces a crystallization free weld for a laser welded Zr-based BMG. Using pre-selected welding parameters, a crystallization-free weld for (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass (BMG) was successfully produced by adopting a Nd:YAG pulse laser in combination with a liquid cooling device (LCD). When a LCD was employed, a faster cooling rate and shorter retention time for the crystallization temperature interval were produced, thus, no crystallization was observed in the weld fusion zone (WFZ) or heat affected zone (HAZ). The hardness in those areas did not differ significantly in comparison to the parent material (PM). For the room temperature laser weld (LCD was not employed), HAZ crystallization seemed unavoidable, although no crystallization occurred within the WFZ. The major crystalline phase in the HAZ was identified as Zr2Cu. When the precipitates were greater in the crystallized area (i.e., HAZ), cracks were more likely to form, thus, hardness in the area was decreased.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.msea.2010.09.014</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2010-11, Vol.528 (1), p.338-341
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_831190724
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Crystallization
Devices
Exact sciences and technology
Heat affected zone
Joining, thermal cutting: metallurgical aspects
Laser beam welding
Liquid cooling
Liquid crystal displays
Metals. Metallurgy
Welding
Zirconium
title Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20a%20Nd:YAG%20laser%20and%20a%20liquid%20cooling%20device%20to%20(Zr53Cu30Ni9Al8)Si0.5%20bulk%20metallic%20glass%20welding&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=WANG,%20H.%20S&rft.date=2010-11-25&rft.volume=528&rft.issue=1&rft.spage=338&rft.epage=341&rft.pages=338-341&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2010.09.014&rft_dat=%3Cproquest_cross%3E831190724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831190724&rft_id=info:pmid/&rfr_iscdi=true