Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type

This paper is concerned with the numerical properties of θ -methods for the solution of alternately advanced and retarded differential equations with piecewise continuous arguments. Using two θ -methods, namely the one-leg θ -method and the linear θ -method, the necessary and sufficient conditions u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2011, Vol.235 (5), p.1542-1552
Hauptverfasser: Wang, Qi, Zhu, Qingyong, Liu, Mingzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1552
container_issue 5
container_start_page 1542
container_title Journal of computational and applied mathematics
container_volume 235
creator Wang, Qi
Zhu, Qingyong
Liu, Mingzhu
description This paper is concerned with the numerical properties of θ -methods for the solution of alternately advanced and retarded differential equations with piecewise continuous arguments. Using two θ -methods, namely the one-leg θ -method and the linear θ -method, the necessary and sufficient conditions under which the analytic stability region is contained in the numerical stability region are obtained, and the conditions of oscillations for the θ -methods are also obtained. It is proved that oscillations of the analytic solution are preserved by the θ -methods. Furthermore, the relationships between stability and oscillations are revealed. Some numerical experiments are presented to illustrate our results.
doi_str_mv 10.1016/j.cam.2010.08.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_831189101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042710004905</els_id><sourcerecordid>831189101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9f0758ee5a85672b4bdb95b2c1167a488e653ffe95fd419fe467a44a2d3ac7b23</originalsourceid><addsrcrecordid>eNp9UU2PFCEQJUYTx9Uf4I2L8dQj0HRDx5PZ-JVssgf1TGgolEkPzAK9m_kr_lprdiYe90SqePVe1XuEvOVsyxkfP-y2zu63gmHN9JZJ_oxsuFZTx5XSz8mG9Up1TAr1kryqdccYGycuN-Tvj2bnuMR2pDZ5mquLy2JbzKnSHGha91CiswuteVnP7ZAL9TEEKJBaxC-4Wy8TD7H9oYcIDh5iBeoyAtKa10pt-Y1UqT2y2qVBSbbBgqr-3iYH_lG-QLPFY9GOB3hNXgS7VHhzea_Iry-ff15_625uv36__nTTOclE66bA1KABBquHUYlZzn6ehlk4zkdlpdYwDj1uOw3BSz4FkKe2tML31qlZ9Ffk_Zn3UPLdCrWZfawO0IYEuLrRPed6QpcRyc9IV3KtBYI5lLi35Wg4M6cYzM5gDOYUg2HaYAw48-7Cbiv6GApeG-v_QdFrMQy9RtzHMw7w1PsIxWAUcHImFnDN-ByfUPkHDFOiNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831189101</pqid></control><display><type>article</type><title>Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Qi ; Zhu, Qingyong ; Liu, Mingzhu</creator><creatorcontrib>Wang, Qi ; Zhu, Qingyong ; Liu, Mingzhu</creatorcontrib><description>This paper is concerned with the numerical properties of θ -methods for the solution of alternately advanced and retarded differential equations with piecewise continuous arguments. Using two θ -methods, namely the one-leg θ -method and the linear θ -method, the necessary and sufficient conditions under which the analytic stability region is contained in the numerical stability region are obtained, and the conditions of oscillations for the θ -methods are also obtained. It is proved that oscillations of the analytic solution are preserved by the θ -methods. Furthermore, the relationships between stability and oscillations are revealed. Some numerical experiments are presented to illustrate our results.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2010.08.041</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>[formula omitted]-methods ; Asymptotic stability ; Computation ; Differential equations ; Exact sciences and technology ; Exact solutions ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in probability and statistics ; Numerical solution ; Numerical stability ; Ordinary differential equations ; Oscillation ; Oscillations ; Piecewise continuous ; Sciences and techniques of general use ; Stability</subject><ispartof>Journal of computational and applied mathematics, 2011, Vol.235 (5), p.1542-1552</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9f0758ee5a85672b4bdb95b2c1167a488e653ffe95fd419fe467a44a2d3ac7b23</citedby><cites>FETCH-LOGICAL-c402t-9f0758ee5a85672b4bdb95b2c1167a488e653ffe95fd419fe467a44a2d3ac7b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377042710004905$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23825538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zhu, Qingyong</creatorcontrib><creatorcontrib>Liu, Mingzhu</creatorcontrib><title>Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type</title><title>Journal of computational and applied mathematics</title><description>This paper is concerned with the numerical properties of θ -methods for the solution of alternately advanced and retarded differential equations with piecewise continuous arguments. Using two θ -methods, namely the one-leg θ -method and the linear θ -method, the necessary and sufficient conditions under which the analytic stability region is contained in the numerical stability region are obtained, and the conditions of oscillations for the θ -methods are also obtained. It is proved that oscillations of the analytic solution are preserved by the θ -methods. Furthermore, the relationships between stability and oscillations are revealed. Some numerical experiments are presented to illustrate our results.</description><subject>[formula omitted]-methods</subject><subject>Asymptotic stability</subject><subject>Computation</subject><subject>Differential equations</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in probability and statistics</subject><subject>Numerical solution</subject><subject>Numerical stability</subject><subject>Ordinary differential equations</subject><subject>Oscillation</subject><subject>Oscillations</subject><subject>Piecewise continuous</subject><subject>Sciences and techniques of general use</subject><subject>Stability</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9UU2PFCEQJUYTx9Uf4I2L8dQj0HRDx5PZ-JVssgf1TGgolEkPzAK9m_kr_lprdiYe90SqePVe1XuEvOVsyxkfP-y2zu63gmHN9JZJ_oxsuFZTx5XSz8mG9Up1TAr1kryqdccYGycuN-Tvj2bnuMR2pDZ5mquLy2JbzKnSHGha91CiswuteVnP7ZAL9TEEKJBaxC-4Wy8TD7H9oYcIDh5iBeoyAtKa10pt-Y1UqT2y2qVBSbbBgqr-3iYH_lG-QLPFY9GOB3hNXgS7VHhzea_Iry-ff15_625uv36__nTTOclE66bA1KABBquHUYlZzn6ehlk4zkdlpdYwDj1uOw3BSz4FkKe2tML31qlZ9Ffk_Zn3UPLdCrWZfawO0IYEuLrRPed6QpcRyc9IV3KtBYI5lLi35Wg4M6cYzM5gDOYUg2HaYAw48-7Cbiv6GApeG-v_QdFrMQy9RtzHMw7w1PsIxWAUcHImFnDN-ByfUPkHDFOiNw</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Wang, Qi</creator><creator>Zhu, Qingyong</creator><creator>Liu, Mingzhu</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2011</creationdate><title>Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type</title><author>Wang, Qi ; Zhu, Qingyong ; Liu, Mingzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9f0758ee5a85672b4bdb95b2c1167a488e653ffe95fd419fe467a44a2d3ac7b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>[formula omitted]-methods</topic><topic>Asymptotic stability</topic><topic>Computation</topic><topic>Differential equations</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in probability and statistics</topic><topic>Numerical solution</topic><topic>Numerical stability</topic><topic>Ordinary differential equations</topic><topic>Oscillation</topic><topic>Oscillations</topic><topic>Piecewise continuous</topic><topic>Sciences and techniques of general use</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Zhu, Qingyong</creatorcontrib><creatorcontrib>Liu, Mingzhu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qi</au><au>Zhu, Qingyong</au><au>Liu, Mingzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2011</date><risdate>2011</risdate><volume>235</volume><issue>5</issue><spage>1542</spage><epage>1552</epage><pages>1542-1552</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>This paper is concerned with the numerical properties of θ -methods for the solution of alternately advanced and retarded differential equations with piecewise continuous arguments. Using two θ -methods, namely the one-leg θ -method and the linear θ -method, the necessary and sufficient conditions under which the analytic stability region is contained in the numerical stability region are obtained, and the conditions of oscillations for the θ -methods are also obtained. It is proved that oscillations of the analytic solution are preserved by the θ -methods. Furthermore, the relationships between stability and oscillations are revealed. Some numerical experiments are presented to illustrate our results.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2010.08.041</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2011, Vol.235 (5), p.1542-1552
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_831189101
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects [formula omitted]-methods
Asymptotic stability
Computation
Differential equations
Exact sciences and technology
Exact solutions
Mathematical analysis
Mathematical models
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Numerical solution
Numerical stability
Ordinary differential equations
Oscillation
Oscillations
Piecewise continuous
Sciences and techniques of general use
Stability
title Stability and oscillations of numerical solutions for differential equations with piecewise continuous arguments of alternately advanced and retarded type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20oscillations%20of%20numerical%20solutions%20for%20differential%20equations%20with%20piecewise%20continuous%20arguments%20of%20alternately%20advanced%20and%20retarded%20type&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Wang,%20Qi&rft.date=2011&rft.volume=235&rft.issue=5&rft.spage=1542&rft.epage=1552&rft.pages=1542-1552&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2010.08.041&rft_dat=%3Cproquest_cross%3E831189101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=831189101&rft_id=info:pmid/&rft_els_id=S0377042710004905&rfr_iscdi=true